Patent Issued for Flight trajectory prediction system and flight trajectory-borne automated delay risk transfer system and corresponding method thereof (USPTO 11379920): Swiss Reinsurance Company Ltd.
2022 JUL 27 (NewsRx) -- By a
The assignee for this patent, patent number 11379920, is
Reporters obtained the following quote from the background information supplied by the inventors: “Despite the enormous growth of aviation infrastructure in all fields of aviation technology, technological developments can hardly keep pace with the fast growth and demand of air traffic. Airspace transportation is a complex interaction of airspace control and guidance systems, aircraft developments, ground infrastructure development such as airports, geographical conditions, weather conditions, local and regional traffic volume, and interacting national and territorial regulations. The level of cooperation between military and civilian aviation systems is another crucially interfering factor, as the EU model may illustrate, in which joint planning and dynamic management control are embedded within the airspace management policy framework;
“Several concepts in air traffic systems involve the use of long term prediction of aircraft trajectories as a way of ensuring efficient and/or conflict free flights from gate to gate.
“The potential efficiency of technical approaches to air traffic systems requires that it be possible to check trajectories against each other to identify any conflicts between them and to allow to project them to future time units. An aircraft following an agreed trajectory can then be assured a trouble free and unperturbed flight. Preferred trajectories from several aircraft will inevitably lead to conflicts which must be resolved by constraining one or more aircraft to fly a non-optimum trajectory. Such traffic avoidance constraints may occur at any point in a trajectory and may involve changes to the lateral track, to altitudes or to timing. The aim is to modify an optimum trajectory as little as possible whilst still meeting the necessary constraints.
“In the prior art, trajectory prediction is carried out either on the ground or in the aircraft, or at both places. The ground-based systems are able generate aircraft trajectories for both the controller and other assistance systems. Some concepts also allow to be based on the aircraft defining their own preferred trajectories (using internal trajectory prediction systems) from constraints sent from a responsible ground system. This preferred trajectory typically is then sent to the ground system so that the controllers can ensure that separation standards were maintained. Prior art systems partially enable to combine real and simulated aircraft trajectories to fake part in the assessment of the trajectory, for example, involving the exchange by an appropriate datalink of detailed constraints from an air traffic control system and the predicted trajectories from the aircraft. Such systems typically allow providing the prediction of nearly optimum trajectories in the presence of traffic avoidance constraints provided by the systems. The basis for any modification process in the prior art is the definition of an optimum flight in a suitable way for controlled modification. This can be done by means of accessible phase tables which describe a typical flight in terms of a series of subphases from takeoff to landing, e.g. to a level approach to the instrument landing system (ILS) intercept. Typically, the route which the aircraft is to fly is described by a constraint list based on a series of waypoints. This structure is also used in uplinks from an air traffic control system to specify constraints on the flight. Sometimes, meteorological forecasts are used to build in the effects of wind and temperature. The performance of the aircraft is simulated by specific models which provided information about thrust and drag with the aircraft flown as described in the phase table. In prior art, the modification process of the systems normally works and has to rely upon the above inputs to arrive al a trajectory prediction which was as close as possible to the original phase table but met the constraints.
“However, despite the existence of more or less sophisticated prediction systems, about 12.6% of all flights nave an arrival delay exceeding 30 minutes. Thus, especially through the enormous increase of air traffic promoted, delays often become endemic to the air traffic. As mentioned, flight operations are frequently affected by a number of factors, such as weather, airspace control, mechanical problems, airplane dispatching and flight scheduling, making flight delays inevitable. To mitigate secondary damages, airlines or air transportation service agencies, or specialist risk transfer companies, such as insurance companies, have been providing a variety of flight delay insurance products to passengers or goods transported by air. Despite their various forms and different coverages, these products all, in essence, provide secondary compensation, not necessarily in cash form, when a predefined event, such as delay, cancellation, return and alternate landing, occurs with respect to the insured flight, or for a listed reason, such as that the passenger could not complete the travel as originally planned and the subsequent damage reaches a predefined degree or threshold. In the conventional way to obtain the compensation from a flight delay insurance product, a passenger needs to collect evidence of the occurrence of a predefined trigger-event covered by the insurance on his/her own, and then file an application for claims with the insurance company or other organizations that provide the product. When the application is received, whether the materials submitted by the passenger and the accident meet claim payment conditions needs to be reviewed manually and confirmed based on the agreed risk transfer. However, claim payment can only be carried out after the review and confirmation. The procedure is complex, time consuming and labor intensive from both sides, risk-transfer system and insured user or good. As a result, there is an urgent need for a system that can provide an automatable risk transfer and claim settlement system for flight delays and that can quickly, accurately and conveniently provide claim settlement and payment transfer for passengers who have suffered losses due to a flight delay.
“In the state of the art, AU2015202700 A1 show an example of a system for adjusting the descent trajectory of an aircraft based on appropriate trajectory predictions. The adjustment parameters of the trajectory vary with the predicted trajectories’ courses. The system is enabled to automatically generate, on the ground and from recorded flight data, an effective value of a calculation parameter and a corresponding theoretical value of the calculation parameter with the help of an auxiliary performance database installed in the aircraft. The generation of the adjustment parameter values is performed for identical flight conditions where the adjustment parameters are used subsequently by an adjustment unit of the system, US2010/036545 A1 discloses an avionic system based on an earth station for automatically eliminating operating malfunctions occurring in airplanes. The avionic system and the airplanes are connected via an interface. If, by parameters transferred from sensors of the airplanes to the avionic system, an operating malfunction is detected on an airplane, the activation of a dedicated malfunction device is triggered by the avionic system to eliminate the malfunction automatically. WO00/07126 A1 discloses an avionic data system used with aircraft, wherein each aircraft has a communications unit located in the aircraft. Data can be transmitted via a cellular infrastructure from the aircraft to the avionic data system after the aircraft has landed. WO02/08057 A1 shows a system providing monitoring and data feedback to aircraft regarding the state of that aircraft, information is provided by sensors located on the aircraft about the status of the aircraft and equipment. The system provides feedback information to the aircraft based on the information received during monitoring. Furthermore, EP1426870 A2 shows a wireless aircraft data system, where an aircraft computer communicates with a plurality of aircraft systems. A ground-based computer system provides wireless remote real-time access to the aircraft systems via the wireless aircraft data system. Finally, DE19856231 A1 discloses another avionic system providing data access via satellites by bidirectionally transmitting data. The paths of the satellites and their arrangement are designed such that bidirectional transmission channels can be provided among airborne airplanes and ground-based operating centers.”
There is additional summary information. Please visit full patent to read further.
In addition to obtaining background information on this patent, NewsRx editors also obtained the inventors’ summary information for this patent: “According to the present invention, these objects are achieved particularly through the features of the independent claims. In addition, further advantageous embodiments follow from the dependent claims and the description.”
There is additional summary information. Please visit full patent to read further.
The claims supplied by the inventors are:
“1. An automated flight trajectory prediction and flight trajectory-borne automated delay risk-transfer system based on a recognizable nature of flight patterns related to airspace risks for risk sharing of a variable number of risk-exposed units by pooling resources of the risk-exposed units and by providing the risk-transfer system as a self-sufficient operatable risk-transfer system based on the pooled resources for the risk-exposed units by a resource-pooling system associated with the risk-transfer system, wherein the risk-exposed units are connected to the risk-transfer system by a plurality of payment-transfer devices configured to receive and store payments from the risk-exposed units for the pooling of their risks and resources, and wherein an automated transfer of risk exposure associated with the risk-exposed units is provided by the risk-transfer system, the risk-transfer system comprising: a monitoring device implemented by processing circuitry and configured to capture or measure air data parameters of aircraft controllers and/or ground-based flight controllers of airports or flight control systems; a core engine implemented by the processing circuitry and linked to the aircraft controllers and/or the ground-based flight controllers via a communication network, the core engine including a filter device configured to filter the monitored air data parameters for detection of flight indicators indicating predicted or actual flight time parameters assigned to a specific flight trajectory of the aircraft; and a trigger device implemented by the processing circuitry and configured to dynamically trigger on the data flow pathway via the communication network, the trigger device comprising a flight trigger to trigger and filter predicted flight trajectories generated by the core engine based on the measured air data parameters and flight indicators associated with the generated predicted flight trajectories, wherein the processing circuitry is configured to dynamically generate a 3D grid network table representing digitized airspace, where each grid point is a location of weather measure parameters, and generate cubes around the grid points, so an entire airspace is represented by a dynamically generated set of cubes, wherein each cube is defined by its centroid, the original grid point, and associated weather measuring parameters remaining homogeneous within the generated cube during a predefined period of time, wherein the core engine is further configured to align generated raw trajectories to the set of cube centroids as fixed 3D positions independent of trajectory data, form trajectories are generated as 4D joint cubes, each cube is a segment that is associated with spatio-temporal attributes and with the therein located weather measuring parameters, wherein a predicted flight trajectory of the predicted flight trajectories is generated as a time-ordered, dynamical set of states, wherein, the core engine by using machine learning, predicts and generates the flight trajectories, the machine learning being applied and trained based on predefined inference structures derived from historical measure data by applying a stochastic structure taking environmental uncertainties into account, wherein the stochastic structure is based on a
“2. The automated flight trajectory prediction and flight trajectory-borne automated delay risk-transfer system according to claim 1, wherein the filter device of the core engine is configured to dynamically increment a time-based stack with the transmitted flight delay parameters based on the selectable trigger-table and activate assignment of the parametric transfer of payments to the corresponding trigger-flag by the filter device when a threshold, triggered on the incremented stack value, is reached.
“3. The automated flight trajectory prediction and flight trajectory-borne automated delay risk-transfer system according to claim 1, wherein the risk-transfer system operates via the core engine as a centralized risk steering and management cockpit device distinctively and dynamically steering a cover by the core engine, the distribution of the risk being dynamically adapted by the risk-transfer system and/or the capacity being dynamically or statically limited per airline and/or per airport, or rejecting the cover in response to material risk changes or a change of pricing mechanism.
“4. The automated flight trajectory prediction and flight trajectory-borne automated delay risk-transfer system according to claim 1, wherein transferred resources are adapted for each single transferred risk at least in dependency of the time-delay threshold value to the departure of the flight, and a resource based uncertainty factor is scaled dynamically down in dependency of the time-delay threshold value to the departure of the flight.
“5. The automated flight trajectory prediction and flight trajectory-borne automated delay risk-transfer system according to claim 1, wherein a payment-transfer device of the plurality of payment-transfer device or an insurance policy data management device is connected with an external sales system via a dedicated port, and in response to a flight ticket and a flight delay insurance policy being sold, the external sales system transmits insurance policy data to the insurance policy data management device to accomplish the risk transfer from the risk-exposed units to the risk-transfer system.
“6. The automated flight trajectory prediction and flight trajectory-borne automated delay risk-transfer system according to claim 1, wherein a payment-transfer device of the plurality of payment-transfer devices is connected with a third-party payment platform through a dedicated port for transmitting payment parameters, at least comprising information of a transfer-out account, information of a transfer-in account, a transfer amount, and a verification key, to the third-party payment platform, and receiving a processing result state from the third-party payment platform.
“7. The automated flight trajectory prediction and flight trajectory-borne automated delay risk-transfer system according to claim 1, wherein the parametric payment transfer from the risk-transfer system to the corresponding risk-exposed units is executed by electronic payment transfer to a transfer-out account associated with a mobile telephone.
“8. The automated flight trajectory prediction and flight trajectory-borne automated delay risk-transfer system according to claim 6, wherein the plurality of payment-transfer devices configured to receive and store payments from the risk-exposed units for the pooling of their risks and resources associated with the transfer-out account of a corresponding risk-exposed unit.
“9. The automated flight trajectory prediction and flight trajectory-borne automated delay risk-transfer system according to claim 1, wherein the defined time-delay threshold value is set individually for each of the risk-exposed units depending on the received and stored payments and/or resources from the risk-exposed units for the pooling of their risks.
“10. The automated flight trajectory prediction and flight trajectory-borne automated delay risk-transfer system according to claim 1, wherein the defined time-delay threshold value is set individually for each of the risk-exposed units and flights or flight trajectories.
“11. The automated flight trajectory prediction and flight trajectory-borne automated delay risk-transfer system according to claim 1, wherein the plurality of payment-transfer devices configured to receive and store payments from the risk-exposed units for the pooling of their risks and resources are assigned to an external sales system of airlines or air transportation sellers, wherein the external sales system transfers a total payment for all of its sold air transportation tickets to risk-exposed units.”
There are additional claims. Please visit full patent to read further.
For more information, see this patent: Biason, Gianni. Flight trajectory prediction system and flight trajectory-borne automated delay risk transfer system and corresponding method thereof.
(Our reports deliver fact-based news of research and discoveries from around the world.)
Researchers at National Health Insurance Service Ilsan Hospital Target Anaphylaxis (Takotsubo syndrome and myasthenic crisis after radiocontrast media-induced anaphylaxis: a case report): Immune System Diseases and Conditions – Anaphylaxis
Period Crop Insurance Market Is Set to Fly High Growth in Years to Come : PICC, Zurich, Tokio Marine
Advisor News
Annuity News
Health/Employee Benefits News
Life Insurance News