Patent Issued for Controlling autonomous vehicles to provide automated emergency response functions (USPTO 11694553): Allstate Insurance Company
2023 JUL 26 (NewsRx) -- By a
The patent’s inventors are Briggs, Ryan M. (
This patent was filed on
From the background information supplied by the inventors, news correspondents obtained the following quote: “Aspects of the disclosure relate to vehicle control and guidance systems that may provide remote control of one or more autonomous vehicles. In particular, one or more aspects of the disclosure relate to controlling autonomous vehicles to provide automated emergency response functions.
“Autonomous vehicles are becoming increasingly sophisticated as satellite navigation technologies, traffic and pedestrian sensor technologies, and guidance technologies continue to improve. Despite advances in various technologies, however, it may be difficult to control or otherwise direct autonomous vehicles. For example, different autonomous vehicles may have different capabilities, and in some instances, relatively large amounts of information may require decoding and/or other processing to make autonomous vehicles effective and/or useful.”
Supplementing the background information on this patent, NewsRx reporters also obtained the inventors’ summary information for this patent: “Aspects of the disclosure provide effective, efficient, scalable, and convenient technical solutions that address and overcome the technical problems associated with controlling autonomous vehicles, particularly in instances in which autonomous vehicles are controlled to provide automated emergency response functions.
“In accordance with one or more embodiments, a computing platform having at least one processor, a memory, and a communication interface may receive, via the communication interface, vehicle data associated with a first vehicle from a first on-board vehicle monitoring system associated with the first vehicle. Subsequently, the computing platform may detect an occurrence of an emergency at a first location based on the vehicle data associated with the first vehicle received from the first on-board vehicle monitoring system associated with the first vehicle. Thereafter, the computing platform may select a first autonomous vehicle to respond to the emergency at the first location based on autonomous vehicle state information. Then, the computing platform may generate one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute one or more emergency response functions. Subsequently, the computing platform may send, via the communication interface, to a first on-board autonomous vehicle control system associated with the first autonomous vehicle, the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more emergency response functions.
“In some embodiments, the vehicle data associated with the first vehicle received from the first on-board vehicle monitoring system associated with the first vehicle may include location data associated with the first vehicle, telematics data associated with the first vehicle, and sensor data associated with the first vehicle.
“In some instances, the emergency at the first location may be a natural disaster. In other instances, the emergency at the first location may be an automobile accident involving the first vehicle.
“In some embodiments, detecting the occurrence of the emergency at the first location may include detecting the occurrence of the emergency at the first location based on vehicle data associated with the first autonomous vehicle received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle.”
The claims supplied by the inventors are:
“1. A computing platform comprising: at least one processor; a communication interface communicatively coupled to the at least one processor; and memory storing computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: detect an occurrence of an incident at a first location; select a first autonomous vehicle to respond to the incident at the first location based on autonomous vehicle state information; generate one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute one or more response functions; and send, via the communication interface, to a first on-board autonomous vehicle control system associated with the first autonomous vehicle, the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more response functions, wherein sending the one or more dispatch commands to the first on-board autonomous vehicle control system associated with the first autonomous vehicle causes the first on-board autonomous vehicle control system associated with the first autonomous vehicle to drive the first autonomous vehicle to the first location.
“2. The computing platform of claim 1, wherein detecting the occurrence of the incident at the first location comprises detecting the occurrence of the incident at the first location based on vehicle data associated with a first vehicle received from a first on-board vehicle monitoring system associated with the first vehicle.
“3. The computing platform of claim 2, wherein the vehicle data associated with the first vehicle received from the first on-board vehicle monitoring system associated with the first vehicle comprises location data associated with the first vehicle, telematics data associated with the first vehicle, and sensor data associated with the first vehicle.
“4. The computing platform of claim 1, wherein the incident at the first location is an automobile accident involving a first vehicle.
“5. The computing platform of claim 1, wherein detecting the occurrence of the incident at the first location comprises detecting the occurrence of the incident at the first location based on vehicle data associated with the first autonomous vehicle received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle.
“6. The computing platform of claim 1, wherein detecting the occurrence of the incident at the first location comprises detecting the occurrence of the incident at the first location based on a disaster alert received from an emergency alert computer system.
“7. The computing platform of claim 1, wherein selecting the first autonomous vehicle to respond to the incident at the first location based on the autonomous vehicle state information comprises determining, based on the autonomous vehicle state information, that the first autonomous vehicle is the closest available autonomous vehicle to the first location of a plurality of available autonomous vehicles within a predetermined distance of the first location.
“8. The computing platform of claim 1, wherein generating the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more response functions comprises generating at least one dispatch command directing the first autonomous vehicle to deliver emergency supplies to the first location, provide medical functions at the first location, capture one or more pictures at the first location, collect claims processing information at the first location, or provide emergency transport for one or more injured persons at the first location.
“9. The computing platform of claim 1, wherein generating the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more response functions comprises generating at least one dispatch command directing the first autonomous vehicle to a supplies loading unit.
“10. The computing platform of claim 1, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: receive, via the communication interface, from a first on-board vehicle monitoring system associated with a first vehicle, vehicle monitoring registration information associated with the first vehicle; and store the vehicle monitoring registration information associated with the first vehicle received from the first on-board vehicle monitoring system associated with the first vehicle in a vehicle management database maintained by the computing platform.
“11. The computing platform of claim 1, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: receive, via the communication interface, from the first on-board autonomous vehicle control system associated with the first autonomous vehicle, autonomous vehicle registration information associated with the first autonomous vehicle; and store the autonomous vehicle registration information associated with the first autonomous vehicle received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle in a vehicle management database maintained by the computing platform.
“12. The computing platform of claim 11, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: receive, via the communication interface, from a second on-board autonomous vehicle control system associated with a second autonomous vehicle, autonomous vehicle registration information associated with the second autonomous vehicle; and store the autonomous vehicle registration information associated with the second autonomous vehicle received from the second on-board autonomous vehicle control system associated with the second autonomous vehicle in the vehicle management database maintained by the computing platform.
“13. The computing platform of claim 1, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: generate, for a plurality of autonomous vehicles, a plurality of polling requests requesting updated state information from a plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles; send, via the communication interface, to the plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles, the plurality of polling requests requesting the updated state information from the plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles; receive, via the communication interface, from the plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles, a plurality of polling responses; and generate the autonomous vehicle state information based on the plurality of polling responses received from the plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles.
“14. The computing platform of claim 1, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: generate environment state information based on environment data received from an environmental data computer system, wherein generating the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more response functions comprises generating at least one dispatch command based on the environment state information.
“15. The computing platform of claim 1, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: select a second autonomous vehicle to respond to the incident at the first location based on the autonomous vehicle state information; generate one or more dispatch commands directing the second autonomous vehicle to move to the first location and execute one or more response functions; and send, via the communication interface, to a second on-board autonomous vehicle control system associated with the second autonomous vehicle, the one or more dispatch commands directing the second autonomous vehicle to move to the first location and execute the one or more response functions.
“16. The computing platform of claim 1, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: receive, via the communication interface, from the first on-board autonomous vehicle control system associated with the first autonomous vehicle, incident data collected by the first on-board autonomous vehicle control system associated with the first autonomous vehicle at the first location.
“17. The computing platform of claim 16, wherein the incident data collected by the first on-board autonomous vehicle control system associated with the first autonomous vehicle at the first location comprises information identifying one or more supplies used at the first location in responding to the incident at the first location, information identifying a nature of the incident at the first location, or claims processing information received by the first on-board autonomous vehicle control system associated with the first autonomous vehicle at the first location.”
There are additional claims. Please visit full patent to read further.
For the URL and additional information on this patent, see: Briggs, Ryan M. Controlling autonomous vehicles to provide automated emergency response functions.
(Our reports deliver fact-based news of research and discoveries from around the world.)
Patent Issued for Processing system to facilitate multi-region risk relationships (USPTO 11694274): Hartford Fire Insurance Company
Patent Issued for Personalized health system, method and device having a nutrition function (USPTO 11694778): Vydiant Inc.
Advisor News
Annuity News
Health/Employee Benefits News
Life Insurance News