Patent Issued for Controlling Autonomous Vehicles To Provide Automated Emergency Response Functions (USPTO 10,922,978) - Insurance News | InsuranceNewsNet

InsuranceNewsNet — Your Industry. One Source.™

Sign in
  • Subscribe
  • About
  • Advertise
  • Contact
Home Now reading Newswires
Topics
    • Advisor News
    • Annuity Index
    • Annuity News
    • Companies
    • Earnings
    • Fiduciary
    • From the Field: Expert Insights
    • Health/Employee Benefits
    • Insurance & Financial Fraud
    • INN Magazine
    • Insiders Only
    • Life Insurance News
    • Newswires
    • Property and Casualty
    • Regulation News
    • Sponsored Articles
    • Washington Wire
    • Videos
    • ———
    • About
    • Advertise
    • Contact
    • Editorial Staff
    • Newsletters
  • Exclusives
  • NewsWires
  • Magazine
  • Newsletters
Sign in or register to be an INNsider.
  • AdvisorNews
  • Annuity News
  • Companies
  • Earnings
  • Fiduciary
  • Health/Employee Benefits
  • Insurance & Financial Fraud
  • INN Exclusives
  • INN Magazine
  • Insurtech
  • Life Insurance News
  • Newswires
  • Property and Casualty
  • Regulation News
  • Sponsored Articles
  • Video
  • Washington Wire
  • Life Insurance
  • Annuities
  • Advisor
  • Health/Benefits
  • Property & Casualty
  • Insurtech
  • About
  • Advertise
  • Contact
  • Editorial Staff

Get Social

  • Facebook
  • X
  • LinkedIn
Newswires
Newswires RSS Get our newsletter
Order Prints
February 25, 2021 Newswires
Share
Share
Post
Email

Patent Issued for Controlling Autonomous Vehicles To Provide Automated Emergency Response Functions (USPTO 10,922,978)

Insurance Daily News

2021 FEB 25 (NewsRx) -- By a News Reporter-Staff News Editor at Insurance Daily News -- A patent by the inventors Kumar, Surender (Palatine, IL); Briggs, Ryan M. (Glen Ellyn, IL); Slusar, Mark V. (Chicago, IL); Gibson, Timothy W. (Barrington, IL), filed on August 1, 2019, was published online on March 1, 2021, according to news reporting originating from Alexandria, Virginia, by NewsRx correspondents.

Patent number 10,922,978 is assigned to Allstate Insurance Company (Northbrook, Illinois, United States).

The following quote was obtained by the news editors from the background information supplied by the inventors: “Aspects of the disclosure relate to vehicle control and guidance systems that may provide remote control of one or more autonomous vehicles. In particular, one or more aspects of the disclosure relate to controlling autonomous vehicles to provide automated emergency response functions.

“Autonomous vehicles are becoming increasingly sophisticated as satellite navigation technologies, traffic and pedestrian sensor technologies, and guidance technologies continue to improve. Despite advances in various technologies, however, it may be difficult to control or otherwise direct autonomous vehicles. For example, different autonomous vehicles may have different capabilities, and in some instances, relatively large amounts of information may require decoding and/or other processing to make autonomous vehicles effective and/or useful.”

In addition to the background information obtained for this patent, NewsRx journalists also obtained the inventors’ summary information for this patent: “Aspects of the disclosure provide effective, efficient, scalable, and convenient technical solutions that address and overcome the technical problems associated with controlling autonomous vehicles, particularly in instances in which autonomous vehicles are controlled to provide automated emergency response functions.

“In accordance with one or more embodiments, a computing platform having at least one processor, a memory, and a communication interface may receive, via the communication interface, vehicle data associated with a first vehicle from a first on-board vehicle monitoring system associated with the first vehicle. Subsequently, the computing platform may detect an occurrence of an emergency at a first location based on the vehicle data associated with the first vehicle received from the first on-board vehicle monitoring system associated with the first vehicle. Thereafter, the computing platform may select a first autonomous vehicle to respond to the emergency at the first location based on autonomous vehicle state information. Then, the computing platform may generate one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute one or more emergency response functions. Subsequently, the computing platform may send, via the communication interface, to a first on-board autonomous vehicle control system associated with the first autonomous vehicle, the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more emergency response functions.

“In some embodiments, the vehicle data associated with the first vehicle received from the first on-board vehicle monitoring system associated with the first vehicle may include location data associated with the first vehicle, telematics data associated with the first vehicle, and sensor data associated with the first vehicle.

“In some instances, the emergency at the first location may be a natural disaster. In other instances, the emergency at the first location may be an automobile accident involving the first vehicle.

“In some embodiments, detecting the occurrence of the emergency at the first location may include detecting the occurrence of the emergency at the first location based on vehicle data associated with the first autonomous vehicle received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle.

“In some embodiments, detecting the occurrence of the emergency at the first location may include detecting the occurrence of the emergency at the first location based on a disaster alert received from an emergency alert computer system.

“In some embodiments, selecting the first autonomous vehicle to respond to the emergency at the first location based on the autonomous vehicle state information may include determining, based on the autonomous vehicle state information, that the first autonomous vehicle is the closest available autonomous vehicle to the first location of a plurality of available autonomous vehicles within a predetermined distance of the first location.

“In some embodiments, generating the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more emergency response functions may include generating at least one dispatch command directing the first autonomous vehicle to deliver emergency supplies to the first location, provide medical functions at the first location, capture one or more pictures at the first location, collect claims processing information at the first location, or provide emergency transport for one or more injured persons at the first location.

“In some embodiments, generating the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more emergency response functions may include generating at least one dispatch command directing the first autonomous vehicle to a supplies loading unit.

“In some embodiments, the computing platform may receive, via the communication interface, from the first on-board vehicle monitoring system associated with the first vehicle, vehicle monitoring registration information associated with the first vehicle. Subsequently, the computing platform may store the vehicle monitoring registration information associated with the first vehicle received from the first on-board vehicle monitoring system associated with the first vehicle in a vehicle management database maintained by the computing platform.

“In some embodiments, the computing platform may receive, via the communication interface, from the first on-board autonomous vehicle control system associated with the first autonomous vehicle, autonomous vehicle registration information associated with the first autonomous vehicle. Subsequently, the computing platform may store the autonomous vehicle registration information associated with the first autonomous vehicle received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle in a vehicle management database maintained by the computing platform.

“In some embodiments, the computing platform may receive, via the communication interface, from a second on-board autonomous vehicle control system associated with a second autonomous vehicle, autonomous vehicle registration information associated with the second autonomous vehicle. Subsequently, the computing platform may store the autonomous vehicle registration information associated with the second autonomous vehicle received from the second on-board autonomous vehicle control system associated with the second autonomous vehicle in the vehicle management database maintained by the computing platform.

“In some embodiments, the computing platform may generate, for a plurality of autonomous vehicles, a plurality of polling requests requesting updated state information from a plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles. Subsequently, the computing platform may send, via the communication interface, to the plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles, the plurality of polling requests requesting the updated state information from the plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles. Thereafter, the computing platform may receive, via the communication interface, from the plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles, a plurality of polling responses. Then, the computing platform may generate the autonomous vehicle state information based on the plurality of polling responses received from the plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles.

“In some embodiments, the computing platform may generate environment state information based on environment data received from an environmental data computer system. In addition, generating the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more emergency response functions may include generating at least one dispatch command based on the environment state information.

“In some embodiments, the computing platform may select a second autonomous vehicle to respond to the emergency at the first location based on the autonomous vehicle state information. Subsequently, the computing platform may generate one or more dispatch commands directing the second autonomous vehicle to move to the first location and execute one or more emergency response functions. Thereafter, the computing platform may send, via the communication interface, to a second on-board autonomous vehicle control system associated with the second autonomous vehicle, the one or more dispatch commands directing the second autonomous vehicle to move to the first location and execute the one or more emergency response functions.

“In some embodiments, the computing platform may receive, via the communication interface, from the first on-board autonomous vehicle control system associated with the first autonomous vehicle, incident data collected by the first on-board autonomous vehicle control system associated with the first autonomous vehicle at the first location. In some instances, the incident data collected by the first on-board autonomous vehicle control system associated with the first autonomous vehicle at the first location may include information identifying one or more supplies used at the first location in responding to the emergency at the first location, information identifying a nature of the emergency at the first location, or claims processing information received by the first on-board autonomous vehicle control system associated with the first autonomous vehicle at the first location.

“In some embodiments, the computing platform may generate an incident report based on the incident data received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle. Subsequently, the computing platform may send, via the communication interface, to an emergency services computer system, the incident report generated based on the incident data received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle. In addition, sending the incident report generated based on the incident data received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle to the emergency services computer system may cause the emergency services computer system to display the incident report generated based on the incident data received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle.

“These features, along with many others, are discussed in greater detail below.”

The claims supplied by the inventors are:

“What is claimed is:

“1. A computing platform comprising: at least one processor; a communication interface communicatively coupled to the at least one processor; and memory storing computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: receive, via the communication interface, vehicle data associated with a first vehicle from a first on-board vehicle monitoring system associated with the first vehicle; detect an occurrence of an incident at a first location based on the vehicle data associated with the first vehicle received from the first on-board vehicle monitoring system associated with the first vehicle; select a first autonomous vehicle to respond to the incident at the first location based on autonomous vehicle state information; generate one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute one or more response functions; and send, via the communication interface, to a first on-board autonomous vehicle control system associated with the first autonomous vehicle, the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more response functions, wherein sending the one or more dispatch commands to the first on-board autonomous vehicle control system associated with the first autonomous vehicle causes the first on-board autonomous vehicle control system associated with the first autonomous vehicle to drive the first autonomous vehicle to the first location.

“2. The computing platform of claim 1, wherein the vehicle data associated with the first vehicle received from the first on-board vehicle monitoring system associated with the first vehicle comprises location data associated with the first vehicle, telematics data associated with the first vehicle, and sensor data associated with the first vehicle.

“3. The computing platform of claim 1, wherein the incident at the first location is a natural disaster.

“4. The computing platform of claim 1, wherein the incident at the first location is an automobile accident involving the first vehicle.

“5. The computing platform of claim 1, wherein detecting the occurrence of the incident at the first location comprises detecting the occurrence of the incident at the first location based on vehicle data associated with the first autonomous vehicle received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle.

“6. The computing platform of claim 1, wherein detecting the occurrence of the incident at the first location comprises detecting the occurrence of the incident at the first location based on a disaster alert received from an emergency alert computer system.

“7. The computing platform of claim 1, wherein selecting the first autonomous vehicle to respond to the incident at the first location based on the autonomous vehicle state information comprises determining, based on the autonomous vehicle state information, that the first autonomous vehicle is the closest available autonomous vehicle to the first location of a plurality of available autonomous vehicles within a predetermined distance of the first location.

“8. The computing platform of claim 1, wherein generating the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more response functions comprises generating at least one dispatch command directing the first autonomous vehicle to deliver emergency supplies to the first location, provide medical functions at the first location, capture one or more pictures at the first location, collect claims processing information at the first location, or provide emergency transport for one or more injured persons at the first location.

“9. The computing platform of claim 1, wherein generating the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more response functions comprises generating at least one dispatch command directing the first autonomous vehicle to a supplies loading unit.

“10. The computing platform of claim 1, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: receive, via the communication interface, from the first on-board vehicle monitoring system associated with the first vehicle, vehicle monitoring registration information associated with the first vehicle; and store the vehicle monitoring registration information associated with the first vehicle received from the first on-board vehicle monitoring system associated with the first vehicle in a vehicle management database maintained by the computing platform.

“11. The computing platform of claim 1, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: receive, via the communication interface, from the first on-board autonomous vehicle control system associated with the first autonomous vehicle, autonomous vehicle registration information associated with the first autonomous vehicle; and store the autonomous vehicle registration information associated with the first autonomous vehicle received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle in a vehicle management database maintained by the computing platform.

“12. The computing platform of claim 11, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: receive, via the communication interface, from a second on-board autonomous vehicle control system associated with a second autonomous vehicle, autonomous vehicle registration information associated with the second autonomous vehicle; and store the autonomous vehicle registration information associated with the second autonomous vehicle received from the second on-board autonomous vehicle control system associated with the second autonomous vehicle in the vehicle management database maintained by the computing platform.

“13. The computing platform of claim 1, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: generate, for a plurality of autonomous vehicles, a plurality of polling requests requesting updated state information from a plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles; send, via the communication interface, to the plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles, the plurality of polling requests requesting the updated state information from the plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles; receive, via the communication interface, from the plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles, a plurality of polling responses; and generate the autonomous vehicle state information based on the plurality of polling responses received from the plurality of on-board autonomous vehicle control systems associated with the plurality of autonomous vehicles.

“14. The computing platform of claim 1, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: generate environment state information based on environment data received from an environmental data computer system, wherein generating the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more response functions comprises generating at least one dispatch command based on the environment state information.

“15. The computing platform of claim 1, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: select a second autonomous vehicle to respond to the incident at the first location based on the autonomous vehicle state information; generate one or more dispatch commands directing the second autonomous vehicle to move to the first location and execute one or more response functions; and send, via the communication interface, to a second on-board autonomous vehicle control system associated with the second autonomous vehicle, the one or more dispatch commands directing the second autonomous vehicle to move to the first location and execute the one or more response functions.

“16. The computing platform of claim 1, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: receive, via the communication interface, from the first on-board autonomous vehicle control system associated with the first autonomous vehicle, incident data collected by the first on-board autonomous vehicle control system associated with the first autonomous vehicle at the first location.

“17. The computing platform of claim 16, wherein the incident data collected by the first on-board autonomous vehicle control system associated with the first autonomous vehicle at the first location comprises information identifying one or more supplies used at the first location in responding to the incident at the first location, information identifying a nature of the incident at the first location, or claims processing information received by the first on-board autonomous vehicle control system associated with the first autonomous vehicle at the first location.

“18. The computing platform of claim 16, wherein the memory stores additional computer-readable instructions that, when executed by the at least one processor, cause the computing platform to: generate an incident report based on the incident data received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle; and send, via the communication interface, to an emergency services computer system, the incident report generated based on the incident data received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle, wherein sending the incident report generated based on the incident data received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle to the emergency services computer system causes the emergency services computer system to display the incident report generated based on the incident data received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle.

“19. A method comprising: at a computing platform comprising at least one processor, memory, and a communication interface: receiving, by the at least one processor, via the communication interface, vehicle data associated with a first vehicle from a first on-board vehicle monitoring system associated with the first vehicle; detecting, by the at least one processor, an occurrence of an incident at a first location based on the vehicle data associated with the first vehicle received from the first on-board vehicle monitoring system associated with the first vehicle; selecting, by the at least one processor, a first autonomous vehicle to respond to the incident at the first location based on autonomous vehicle state information; generating, by the at least one processor, one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute one or more response functions; and sending, by the at least one processor, via the communication interface, to a first on-board autonomous vehicle control system associated with the first autonomous vehicle, the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more response functions, wherein sending the one or more dispatch commands to the first on-board autonomous vehicle control system associated with the first autonomous vehicle causes the first on-board autonomous vehicle control system associated with the first autonomous vehicle to drive the first autonomous vehicle to the first location, and wherein detecting the occurrence of the incident at the first location comprises detecting the occurrence of the incident at the first location based on vehicle data associated with the first autonomous vehicle received from the first on-board autonomous vehicle control system associated with the first autonomous vehicle.

“20. One or more non-transitory computer-readable media storing instructions that, when executed by a computing platform comprising at least one processor, memory, and a communication interface, cause the computing platform to: receive, via the communication interface, vehicle data associated with a first vehicle from a first on-board vehicle monitoring system associated with the first vehicle; detect an occurrence of an incident at a first location based on the vehicle data associated with the first vehicle received from the first on-board vehicle monitoring system associated with the first vehicle; select a first autonomous vehicle to respond to the incident at the first location based on autonomous vehicle state information; generate one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute one or more response functions; and send, via the communication interface, to a first on-board autonomous vehicle control system associated with the first autonomous vehicle, the one or more dispatch commands directing the first autonomous vehicle to move to the first location and execute the one or more response functions, wherein sending the one or more dispatch commands to the first on-board autonomous vehicle control system associated with the first autonomous vehicle causes the first on-board autonomous vehicle control system associated with the first autonomous vehicle to drive the first autonomous vehicle to the first location, and wherein selecting the first autonomous vehicle to respond to the incident at the first location based on the autonomous vehicle state information comprises determining, based on the autonomous vehicle state information, that the first autonomous vehicle is the closest available autonomous vehicle to the first location of a plurality of available autonomous vehicles within a predetermined distance of the first location.”

URL and more information on this patent, see: Kumar, Surender; Briggs, Ryan M.; Slusar, Mark V.; Gibson, Timothy W. Controlling Autonomous Vehicles To Provide Automated Emergency Response Functions. U.S. Patent Number 10,922,978, filed August 1, 2019, and published online on March 1, 2021. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=10,922,978.PN.&OS=PN/10,922,978RS=PN/10,922,978

(Our reports deliver fact-based news of research and discoveries from around the world.)

Older

Swanville store to reopen after fatal crash and fire

Newer

HEALTH INSURANCE SERVICES

Advisor News

  • Metlife study finds less than half of US workforce holistically healthy
  • Invigorating client relationships with AI coaching
  • SEC: Get-rich-quick influencer Tai Lopez was running a Ponzi scam
  • Companies take greater interest in employee financial wellness
  • Tax refund won’t do what fed says it will
More Advisor News

Annuity News

  • The structural rise of structured products
  • How next-gen pricing tech can help insurers offer better annuity products
  • Continental General Acquires Block of Life Insurance, Annuity and Health Policies from State Guaranty Associations
  • Lincoln reports strong life/annuity sales, executes with ‘discipline and focus’
  • LIMRA launches the Lifetime Income Initiative
More Annuity News

Health/Employee Benefits News

  • PLAINFIELD, VERMONT MAN SENTENCED TO 2 YEARS OF PROBATION FOR SOCIAL SECURITY DISABILITY FRAUD
  • Broward schools cut coverage of weight-loss drugs to save $12 million
  • WA small businesses struggle to keep up with health insurance hikes
  • OID announces state-based health insurance exchange
  • Cigna plans to lay off 2,000 employees worldwide
More Health/Employee Benefits News

Life Insurance News

  • The structural rise of structured products
  • AM Best Affirms Credit Ratings of Members of Aegon Ltd.’s U.S. Subsidiaries
  • Corporate PACs vs. Silicon Valley: Sharply different fundraising paths for Democratic rivals Mike Thompson, Eric Jones in 4th District race for Congress
  • Continental General Acquires Block of Life Insurance, Annuity and Health Policies from State Guaranty Associations
  • LIMRA launches the Lifetime Income Initiative
Sponsor
More Life Insurance News

- Presented By -

Top Read Stories

More Top Read Stories >

NEWS INSIDE

  • Companies
  • Earnings
  • Economic News
  • INN Magazine
  • Insurtech News
  • Newswires Feed
  • Regulation News
  • Washington Wire
  • Videos

FEATURED OFFERS

Elevate Your Practice with Pacific Life
Taking your business to the next level is easier when you have experienced support.

LIMRA’s Distribution and Marketing Conference
Attend the premier event for industry sales and marketing professionals

Get up to 1,000 turning 65 leads
Access your leads, plus engagement results most agents don’t see.

What if Your FIA Cap Didn’t Reset?
CapLock™ removes annual cap resets for clearer planning and fewer surprises.

Press Releases

  • LIDP Named Top Digital-First Insurance Solution 2026 by Insurance CIO Outlook
  • Finseca & IAQFP Announce Unification to Strengthen Financial Planning
  • Prosperity Life Group Appoints Nick Volpe as Chief Technology Officer
  • Prosperity Life Group appoints industry veteran Rona Guymon as President, Retail Life and Annuity
  • Financial Independence Group Marks 50 Years of Growth, Innovation, and Advisor Support
More Press Releases > Add Your Press Release >

How to Write For InsuranceNewsNet

Find out how you can submit content for publishing on our website.
View Guidelines

Topics

  • Advisor News
  • Annuity Index
  • Annuity News
  • Companies
  • Earnings
  • Fiduciary
  • From the Field: Expert Insights
  • Health/Employee Benefits
  • Insurance & Financial Fraud
  • INN Magazine
  • Insiders Only
  • Life Insurance News
  • Newswires
  • Property and Casualty
  • Regulation News
  • Sponsored Articles
  • Washington Wire
  • Videos
  • ———
  • About
  • Advertise
  • Contact
  • Editorial Staff
  • Newsletters

Top Sections

  • AdvisorNews
  • Annuity News
  • Health/Employee Benefits News
  • InsuranceNewsNet Magazine
  • Life Insurance News
  • Property and Casualty News
  • Washington Wire

Our Company

  • About
  • Advertise
  • Contact
  • Meet our Editorial Staff
  • Magazine Subscription
  • Write for INN

Sign up for our FREE e-Newsletter!

Get breaking news, exclusive stories, and money- making insights straight into your inbox.

select Newsletter Options
Facebook Linkedin Twitter
© 2026 InsuranceNewsNet.com, Inc. All rights reserved.
  • Terms & Conditions
  • Privacy Policy
  • InsuranceNewsNet Magazine

Sign in with your Insider Pro Account

Not registered? Become an Insider Pro.
Insurance News | InsuranceNewsNet