Brain’s sensitivity to different types of regret may impact mood disorders like depression, Mount Sinai researchers find: The Mount Sinai Hospital / Mount Sinai School of Medicine
2022 OCT 31 (NewsRx) -- By a
The study, published
These novel findings could have broad implications for multiple fields, including psychiatry, psychology, and behavioral economics, and could inform the future design of targeted therapies for mood disorders in humans.
“Until now, little has been known about how sensitivity to regret may be altered in mood disorders like depression. For example, is regret exaggerated and do individuals hyper-ruminate on past decisions, or are those with depression numb to this emotion? Is this adaptive or maladaptive, and are individuals unable to learn from their mistakes?” says
Building on previous work demonstrating that rats and mice are capable of processing regret-like thoughts, the Mount Sinai study pushes the boundaries of what can be captured in rodent models used for the study of mental illnesses. The authors accomplished this goal by combining sophisticated approaches in behavioral economics and chronic stress procedures with viral gene therapy to study the neural and molecular basis of complex decision making in animals.
This methodology built on principles of neuroeconomics, which is the study of how the physical limits of the brain give rise to biases we have when making decisions. This approach enabled researchers to capture how complex choices made in one’s past can impact subsequent decisions and, importantly, how the way in which individuals process or realize missed opportunities is capable of interacting with affective states when influencing future choices-the basis of regret.
The team trained mice on a decision-making task termed “Restaurant Row” during which animals navigated a maze foraging for their sole source of food (see animation). Mice were allotted a limited amount of time each day to invest in rewards of varying costs (delays randomly selected from 1 to 30 seconds signaled by the pitch of a tone) and subjective value (unique flavors tied to four separate locations, or “restaurants”). Mice chose to enter or skip each restaurant depending on the cost and flavor presented. If mice accepted an offer by entering the restaurant, they were tasked to wait out a countdown in order to earn the reward before moving on to the next restaurant. Mice displayed stable preferences of willingness to wait depending on each restaurant’s flavor. A violation in one’s own decision policy can be interpreted as the first step in constructing a situation that could invoke regret.
Among the major findings is the existence of two distinct types of regret that are not generic but, rather, associated with separate parts of the brain, depending on the exact nature of the missed opportunity that is being processed. Both types involve animals making mistakes. However, type one regret was defined as an “economic violation” in which animals walked away from a good opportunity only to get burned on subsequent trials (see summary figure). Conversely, type two regret was defined as decisions in which animals made poor choices to invest their limited time in offers they typically could not afford. Thus, type one regret is framed by the individual’s realization that they missed or passed up a favorable opportunity, while type two regret is characterized by facing the decision to cut one’s losses and move on. Although both types of regret may involve reflecting on the road not traveled and what could have been, type one regret emphasizes the choice of having let something good go, while type two regret emphasizes having to change one’s mind. This study found that the weight these mistakes carry in altering future decisions are biologically distinct and uniquely linked to stress-response traits.
“We discovered that stress-susceptible mice were hypersensitive to type one regret and insensitive to type two regret while, conversely, healthy mice were insensitive to type one regret and only sensitive to type two, enhanced more so in stress-resilient mice,” explains co-author
According to
“Prior to our study, professionals may not have thought to ask patients more specific questions during psychiatric evaluations detailing and subcategorizing regret with the level of delicacy we’ve outlined,” says
The Mount Sinai researchers also discovered that a gene known to regulate many stress-sensitive responses in the brain-CREB-may independently influence the two types of regret in separate brain regions: the medial prefrontal cortex and the nucleus accumbens.
“In both humans and mice, this gene is known to promote stress resilience in the medial prefrontal cortex while conferring the opposite, vulnerability to stress, in the nucleus accumbens,” says
Until now, it remained unclear what role, if any, CREB function plays in more complex emotional processes. By experimentally manipulating CREB activity in both brain regions, the team found a biological connection and a potential molecular target to develop new therapies that could alter certain aspects of regret in a brain-region-specific manner in order to restore healthy emotional processing, while ameliorating potentially unhealthy and pathological forms of this complex emotion.
“Knowing that subtypes of regret-processing stem from different brain regions has broad implications for appreciating which brain circuits are not only driving different choices but the different ways in which we reflect on our past,” says Dr.
About the
Ranked 14th nationwide in
Icahn Mount Sinai offers highly competitive MD, PhD, and Master’s degree programs, with current enrollment of approximately 1,300 students. It has the largest graduate medical education program in the country, with more than 2,000 clinical residents and fellows training throughout the Health System. In addition, more than 550 postdoctoral research fellows are in training within the Health System.
A culture of innovation and discovery permeates every Icahn Mount Sinai program. Mount Sinai’s technology transfer office, one of the largest in the country, partners with faculty and trainees to pursue optimal commercialization of intellectual property to ensure that Mount Sinai discoveries and innovations translate into healthcare products and services that benefit the public.
Keywords for this news article include: Genetics, Neuroscience, Psychiatric, Psychiatry,
(Our reports deliver fact-based news of research and discoveries from around the world.)
Research Results from Showa University Update Knowledge of Coumarins and Indandiones (Risk and benefit trade-off of thromboprophylaxis in patients with Fontan circulation: insights from the National Database of Health Insurance Claims of Japan): Drugs and Therapies – Coumarins and Indandiones
Patent Issued for Systems and methods for dynamically generating optimal routes for management of multiple vehicles (USPTO 11466998): State Farm Mutual Automobile Insurance Company
Advisor News
Annuity News
Health/Employee Benefits News
Life Insurance News