LLMs hold promise for the actuarial field - Insurance News | InsuranceNewsNet

InsuranceNewsNet — Your Industry. One Source.™

Sign in
  • Subscribe
  • About
  • Advertise
  • Contact
Home Now reading Life Insurance News
Topics
    • Advisor News
    • Annuity Index
    • Annuity News
    • Companies
    • Earnings
    • Fiduciary
    • From the Field: Expert Insights
    • Health/Employee Benefits
    • Insurance & Financial Fraud
    • INN Magazine
    • Insiders Only
    • Life Insurance News
    • Newswires
    • Property and Casualty
    • Regulation News
    • Sponsored Articles
    • Washington Wire
    • Videos
    • ———
    • About
    • Advertise
    • Contact
    • Editorial Staff
    • Newsletters
  • Exclusives
  • NewsWires
  • Magazine
  • Newsletters
Sign in or register to be an INNsider.
  • AdvisorNews
  • Annuity News
  • Companies
  • Earnings
  • Fiduciary
  • Health/Employee Benefits
  • Insurance & Financial Fraud
  • INN Exclusives
  • INN Magazine
  • Insurtech
  • Life Insurance News
  • Newswires
  • Property and Casualty
  • Regulation News
  • Sponsored Articles
  • Video
  • Washington Wire
  • Life Insurance
  • Annuities
  • Advisor
  • Health/Benefits
  • Property & Casualty
  • Insurtech
  • About
  • Advertise
  • Contact
  • Editorial Staff

Get Social

  • Facebook
  • X
  • LinkedIn
From the Field: Expert Insights
Life Insurance News RSS Get our newsletter
Order Prints
September 17, 2025 Life Insurance News
Share
Share
Tweet
Email

LLMs hold promise for the actuarial field

By Dale Hall

The rapid advancement of generative artificial intelligence has led to the development of large language models. ChatGPT and other AI chatbots are examples of tools powered by LLMs. These models specialize in natural language processing to understand and generate human language. Massive amounts of text data train LLMs to perform tasks such as mimicking human language, providing translations, summarizing, answering questions, generating text and even software coding.

LLM
Dale Hall

LLMs hold promise for many industries and professions, including the insurance industry and the actuarial field.

LLM use cases in insurance

In March, the Society of Actuaries Research Institute convened a panel of experts to discuss the use of generative AI in the insurance industry. The panel consisted of actuaries from a variety of practice areas, and they noted several LLM insurance applications such as:

  • Coding assistance: Code generation and automating documentation
  • Digital assistant: Email, document creation, note taking, meeting summarization
  • Data summarization and categorization: Claims data, submissions, notes; reinsurance treaties; medical underwriting files, calls and meetings
  • Testing and model validation assistance: Generating test cases, testing documentation, review and validation
  • Other applications: Translation, research source attribution, claims integration

The panel concluded that current AI tools, such as LLMs, can boost productivity for some tasks, but the technology hasn’t evolved enough to replicate actuarial analysis and decision-making. However, the panel predicted it will become necessary for actuaries to use these tools.

Implementing LLMs isn’t without challenges. The sensitive data insurance companies manage makes data privacy and security critical. Also, regulation compliance and ethical standards are needed to build trust with customers and stakeholders. So, incorporating LLMs into current systems demands thorough planning and teamwork among various departments within the organization.

Benchmarking and comparing models

After identifying tasks that might be suited for LLMs to complete or assist, consider the specific type that best meets the needs of a given task. There are four basic variants for use cases:

  • Foundational models: Have not been tuned for specific tasks
  • Instruct models: More fine-tuned, meant for task-oriented applications
  • Code models: Specialize in understanding and generating code
  • Multimodal models: Understand and generate text, images and audio

Opting for the largest and highest-performing LLM may not always be necessary or cost-effective. Other considerations include latency requirements, budgets, scalability, ethical and bias issues. Experimentation and evaluating the results are helpful in choosing the appropriate LLM.

Finding the right LLM for a specific task depends on these considerations:

  1. Model size and computational requirements
Need Requirement Size
Simple tasks, quick responses Less powerful hardware Smaller model
Complex reasoning More computational resources Larger model

 

  1. Task-specific performance
  2. Context window size: The amount of text generated in a single interaction
  3. Cost vs. performance

 

LLM benchmarks are assessment tools that compare strengths and limitations. There are categories of benchmarks, some of which are listed in the table below, along with the specific products that fall within that category and a description of how each of them works:

 

Benchmark category Benchmark product Description
Knowledge and Recall Massive Multitask Language Understanding Uses about 16,000 multiple-choice questions across a range of topics, from mathematics to law.
Google-Proof Question and Answering 448 multiple-choice questions written by experts in biology, physics and chemistry. Tests a model’s expert-level knowledge.
Mathematics Mathematics Aptitude Test of Heuristics 12,500 problems from mathematics competitions, covering a range of difficulty levels and math topics. Requires LLMs to demonstrate their reasoning.
Coding HumanEval Assesses an LLM’s code-writing capabilities. Consists of 164 programming problems that the LLM is required to synthesize.
Reading Comprehension Discrete Reasoning Over the Content of Paragraphs (DROP) A Q&A dataset that assesses an LLM’s ability to understand and extract information from inputs.

 

The best way to evaluate LLMs is to create a benchmark that is tailored to a specific task. This method not only gives a more accurate measure of performance for that task but also supports development and enables ongoing performance tracking.

Deploying an LLM

The easiest way to use an LLM is through an application programming interface from major developers, such as ChatGPT. While hosting an LLM independently offers more control, using an API is simpler, faster and cost-effective. It is important to ensure that the chosen provider meets security and privacy standards.

Launching an open LLM follows a similar process to other software deployments, although the details can differ depending on the specific LLM being used. There are a variety of deployment methods, from software for beginners to more robust solutions that are appropriate for production environments. As far as where to locate the LLM, the cloud offers a simpler solution compared to building an independent server.

Because deploying LLMs falls outside typical actuarial training and expertise, it is recommended to seek assistance from cloud engineers and software developers.

Assessing risk and maintaining governance

Actuaries are experts in risk management and governance and have extensive knowledge about technology and data. Their expertise and professional standards make it crucial that they have key roles in the responsible and ethical use of AI and LLMs.

Risk and ethics considerations are essential in choosing LLMs for responsible actuarial use. For example, it is important to find a provider who shares the organization’s viewpoint on ethical AI practices and that they feel comfortable with their AI governance structure.

Other provider considerations include:

  • Privacy and protection: Ensuring models and their providers meet privacy and data protection requirements.
  • Risk and compliance: Regularly reviewing LLM output to ensure it meets compliance requirements.
  • Technology and reliability: Ensuring the model has the necessary capabilities, performs consistently and offers sufficient technical support.
  • Bias, fairness and discrimination: Confirming the LLM addresses these risks.
  • Transparency and explainability: Documenting model specifications and how it is used, logging outputs, and detailing the development process.
  • Accountability and responsibility: Establishing clear lines of accountability and responsibility to oversee decision-making with LLM help.

Below are two important resources that provide a high-level overview of AI ethics:

  • UNESCO’s Recommendation on the Ethics of Artificial Intelligence
  • The National Association of Insurance Commissioners Principles on Artificial Intelligence, particularly relevant to the financial services and insurance sectors.

SOA resources to help actuaries leverage AI

The SOA Research Institute published a detailed guide on deploying LLMs for actuarial use, Operationalizing LLMs: A Guide for Actuaries, which provides more details and helpful tips. Additionally, SOA’s AI Research landing page provides a library of reports and resources, including the monthly Actuarial Intelligence Bulletin, which informs readers about advancements in actuarial technology and new AI research reports.

© Entire contents copyright 2025 by InsuranceNewsNet.com Inc. All rights reserved. No part of this article may be reprinted without the expressed written consent from InsuranceNewsNet.com.

 

Dale Hall

Dale Hall, FSA, MAAA, CERA, is managing director of research, Society of Actuaries Research Institute. Contact him at [email protected].

Older

Life insurers’ superpower? Long-term promises says ACLI CEO David Chavern

Newer

Annuities are booming — here’s what could fuel the next wave

Advisor News

  • Bill that could expand access to annuities headed to the House
  • Private equity, crypto and the risks retirees can’t ignore
  • Will Trump accounts lead to a financial boon? Experts differ on impact
  • Helping clients up the impact of their charitable giving with a DAF
  • 3 tax planning strategies under One Big Beautiful Bill
More Advisor News

Annuity News

  • Hildene Capital Management Announces Purchase Agreement to Acquire Annuity Provider SILAC
  • Removing barriers to annuity adoption in 2026
  • An Application for the Trademark “EMPOWER INVESTMENTS” Has Been Filed by Great-West Life & Annuity Insurance Company: Great-West Life & Annuity Insurance Company
  • Bill that could expand access to annuities headed to the House
  • LTC annuities and minimizing opportunity cost
More Annuity News

Health/Employee Benefits News

  • Feeling the pinch of rising health insurance rates? Debt management could help
  • Swing district Republicans brace for political fallout if health care subsidies expire
  • GOP unity tested as lawmakers seek health plan to counter Democrats' Obamacare subsidy extension
  • Rep. Fulcher introduces bill extending private, short-term health care coverage
  • Health insurance in retirement
Sponsor
More Health/Employee Benefits News

Property and Casualty News

  • Oklahoma Watch: Attorney general intervenes in State Farm lawsuit
  • Alexander County issues Request for Proposals for insurance broker/agent
  • Despite rate hikes, study finds California home insurance costs are middle of the pack nationwide
  • Using AI to predict and prevent weather catastrophe home insurance claims
  • Pennsylvania State University (Penn State) Researchers Have Provided New Study Findings on Environment (Flood risk perceptions, insurance, and policy: a review of the Pennsylvania flood task force initiative): Environment
More Property and Casualty News

- Presented By -

Top Read Stories

More Top Read Stories >

NEWS INSIDE

  • Companies
  • Earnings
  • Economic News
  • INN Magazine
  • Insurtech News
  • Newswires Feed
  • Regulation News
  • Washington Wire
  • Videos

FEATURED OFFERS

Slow Me the Money
Slow down RMDs … and RMD taxes … with a QLAC. Click to learn how.

ICMG 2026: 3 Days to Transform Your Business
Speed Networking, deal-making, and insights that spark real growth — all in Miami.

Your trusted annuity partner.
Knighthead Life provides dependable annuities that help your clients retire with confidence.

Press Releases

  • Altara Wealth Launches as $1B+ Independent Advisory Enterprise
  • A Heartfelt Letter to the Independent Advisor Community
  • 3 Mark Financial Celebrates 40 Years of Partnerships and Purpose
  • Hexure Launches AI Enabled Version of Its Platform to Power Life Insurance Sales
  • National Life Group Board Approves Dividends for 2026
More Press Releases > Add Your Press Release >

How to Write For InsuranceNewsNet

Find out how you can submit content for publishing on our website.
View Guidelines

Topics

  • Advisor News
  • Annuity Index
  • Annuity News
  • Companies
  • Earnings
  • Fiduciary
  • From the Field: Expert Insights
  • Health/Employee Benefits
  • Insurance & Financial Fraud
  • INN Magazine
  • Insiders Only
  • Life Insurance News
  • Newswires
  • Property and Casualty
  • Regulation News
  • Sponsored Articles
  • Washington Wire
  • Videos
  • ———
  • About
  • Advertise
  • Contact
  • Editorial Staff
  • Newsletters

Top Sections

  • AdvisorNews
  • Annuity News
  • Health/Employee Benefits News
  • InsuranceNewsNet Magazine
  • Life Insurance News
  • Property and Casualty News
  • Washington Wire

Our Company

  • About
  • Advertise
  • Contact
  • Meet our Editorial Staff
  • Magazine Subscription
  • Write for INN

Sign up for our FREE e-Newsletter!

Get breaking news, exclusive stories, and money- making insights straight into your inbox.

select Newsletter Options
Facebook Linkedin Twitter
© 2025 InsuranceNewsNet.com, Inc. All rights reserved.
  • Terms & Conditions
  • Privacy Policy
  • InsuranceNewsNet Magazine

Sign in with your Insider Pro Account

Not registered? Become an Insider Pro.
Insurance News | InsuranceNewsNet