Patent Issued for Data Platform For Automated Data Extraction, Transformation, And/Or Loading (USPTO 10,810,223) - Insurance News | InsuranceNewsNet

InsuranceNewsNet — Your Industry. One Source.™

Sign in
  • Subscribe
  • About
  • Advertise
  • Contact
Home Now reading Newswires
Topics
    • Advisor News
    • Annuity Index
    • Annuity News
    • Companies
    • Earnings
    • Fiduciary
    • From the Field: Expert Insights
    • Health/Employee Benefits
    • Insurance & Financial Fraud
    • INN Magazine
    • Insiders Only
    • Life Insurance News
    • Newswires
    • Property and Casualty
    • Regulation News
    • Sponsored Articles
    • Washington Wire
    • Videos
    • ———
    • About
    • Advertise
    • Contact
    • Editorial Staff
    • Newsletters
  • Exclusives
  • NewsWires
  • Magazine
  • Newsletters
Sign in or register to be an INNsider.
  • AdvisorNews
  • Annuity News
  • Companies
  • Earnings
  • Fiduciary
  • Health/Employee Benefits
  • Insurance & Financial Fraud
  • INN Exclusives
  • INN Magazine
  • Insurtech
  • Life Insurance News
  • Newswires
  • Property and Casualty
  • Regulation News
  • Sponsored Articles
  • Video
  • Washington Wire
  • Life Insurance
  • Annuities
  • Advisor
  • Health/Benefits
  • Property & Casualty
  • Insurtech
  • About
  • Advertise
  • Contact
  • Editorial Staff

Get Social

  • Facebook
  • X
  • LinkedIn
Newswires
Newswires RSS Get our newsletter
Order Prints
October 30, 2020 Newswires
Share
Share
Tweet
Email

Patent Issued for Data Platform For Automated Data Extraction, Transformation, And/Or Loading (USPTO 10,810,223)

Hospital & Nursing Home Daily

2020 OCT 30 (NewsRx) -- By a News Reporter-Staff News Editor at Hospital & Nursing Home Daily -- A patent by the inventors Sundararaman, Arun (Chennai, IN); Ramamoorthy, Udayakumar (Tamilnadu, IN); Pargunarajan, Sureshkumar (Tamilnadu, IN); Appusamy, Sangeetha (Tamilnadu, IN), filed on June 14, 2018, was published online on November 2, 2020, according to news reporting originating from Alexandria, Virginia, by NewsRx correspondents.

Patent number 10,810,223 is assigned to Accenture Global Solutions Limited (Dublin, Ireland).

The following quote was obtained by the news editors from the background information supplied by the inventors: “As more and more industries become digitized, it is not uncommon for different kinds of information to be exchanged electronically. The healthcare industry is one in which an Electronic Data Interchange (EDI) plays a central role in facilitating the electronic communication and exchange of healthcare related data, including, for example, data pertaining to health insurance claims, health insurance enrollment, eligibility data, claims settlement, medical records, and/or the like. The Health insurance Portability and Accountability Act (HIPAA) has led to standardized claims administration and automation in the healthcare industry by employing EDI messages to exchange data.”

In addition to the background information obtained for this patent, NewsRx journalists also obtained the inventors’ summary information for this patent: “According to some possible implementations, a method may include receiving, by a computing resource of a cloud computing environment, a plurality of data files from a healthcare electronic data interchange (EDI). The plurality of data files may be received in a plurality of different data formats, and the plurality of data files may include data elements associated with healthcare data. The method may include converting, by a computing resource of the cloud computing environment, the plurality of data files received in the plurality of different data formats to a common data format. The method may include extracting, by a computing resource of the cloud computing environment, data elements from the plurality of data files converted to the common data format. The method may include assigning, by a computing resource of the cloud computing environment, the data elements extracted from the plurality of data files to file identifiers that identify from which of the plurality of data files the data elements were extracted. The method may include assigning, by a computing resource of the cloud computing environment, the data elements extracted from the plurality of data files to attribute identifiers that identify types of healthcare data represented by the data elements. The method may include aggregating, by a computing resource of the cloud computing environment, the data elements based on the file identifiers and the attribute identifiers to create a standardized data set. The method may include mapping, by a computing resource of the cloud computing environment, the data elements in the standardized data set to a plurality of functions contained in at least one function library based on a mapping between the attribute identifiers and the plurality of functions. The method may include generating, by a computing resource of the cloud computing environment, a plurality of values based on mapping the data elements to the plurality of functions. The method may include determining, by a computing resource of the cloud computing environment, a healthcare metric based on combining the plurality of values according to a healthcare metric definition. The method may include posting, by a computing resource of the cloud computing environment, the healthcare metric to the healthcare EDI for consumption by healthcare data clients.

“According to some possible implementations, a device may include one or more memories, and one or more processors, communicatively coupled to the one or more memories, to receive a plurality of data files. The plurality of data files may be received in a plurality of different data formats, and the plurality of data files may include data elements associated with healthcare data. The one or more processors may convert the plurality of data files received in the plurality of different data formats to a common data format, extract data elements from the plurality of data files converted to the common data format, assign the data elements extracted from the plurality of data files to file identifiers that identify from which of the plurality of data files the data elements were extracted, and assign the data elements extracted from the plurality of data files to attribute identifiers that identify types of healthcare data represented by the data elements. The one or more processors may aggregate the data elements based on the file identifiers and the attribute identifiers to create a standardized data set, examine the standardized data set to identify the attribute identifiers present in the standardized data set, and determine, using a data model, a list of healthcare metrics that are derivable from the standardized data set based on the attribute identifiers present in the standardized data set. The one or more processors may map the data elements in the standardized data set to a plurality of functions based on a mapping between the attribute identifiers and the plurality of functions. The plurality of functions may be configured to generate a healthcare metric included in the list of healthcare metrics. The one or more processors may generate a plurality of values based on processing the data elements using the plurality of functions, derive the healthcare metric based on combining the plurality of values according to a healthcare metric definition, and post the healthcare metric to a healthcare electronic data interchange (EDI) for consumption by healthcare data client.

“According to some possible implementations, a non-transitory computer-readable medium may store one or more instructions that, when executed by one or more processors, cause the one or more processors to receive a plurality of data files. The plurality of data files may be received in a plurality of different data formats. The plurality of data files may include data elements. The one or more instructions, when executed by the one or more processors, may cause the one or more processors to convert the plurality of data files received in the plurality of different data formats to a common data format, and extract data elements from the plurality of data files converted to the common data format. The one or more instructions, when executed by the one or more processors, may cause the one or more processors to assign the data elements extracted from the plurality of data files to file identifiers that identify from which of the plurality of data files the data elements were extracted, and assign the data elements extracted from the plurality of data files to attribute identifiers that identify types of data represented by the data elements. The one or more instructions, when executed by the one or more processors, may cause the one or more processors to examine a data file of the plurality of data files to identify a combination of data elements present in the data file, and determine, using a first machine learning model, a first score for a data element in the data file based on the combination of data elements present in the data file. The first score may predict a type of data represented by the data element based on the combination of data elements present in the data file. The one or more instructions, when executed by the one or more processors, may cause the one or more processors to assign the data element to an attribute identifier based on the first score, aggregate the data elements based on the file identifiers and the attribute identifiers to create a standardized data set, and map the data elements in the standardized data set to a plurality of functions contained in at least one function library based on a mapping between the attribute identifiers and the plurality of functions. The one or more instructions, when executed by the one or more processors, may cause the one or more processors to generate a plurality of values based on mapping the data elements to the plurality of functions, derive a metric based on combining the plurality of values according to a metric definition, and post the metric to an electronic data interchange (EDI) for consumption by data clients.”

The claims supplied by the inventors are:

“What is claimed is:

“1. A method, comprising: receiving, by a computing resource of a cloud computing environment, a plurality of data files from a healthcare electronic data interchange (EDI), wherein the plurality of data files are received in a plurality of different data formats, and wherein the plurality of data files include data elements associated with healthcare data; converting, by the computing resource of the cloud computing environment, the plurality of data files received in the plurality of different data formats to a common data format; extracting, by the computing resource of the cloud computing environment, data elements from the plurality of data files converted to the common data format; extracting, by the computing resource of the cloud computing environment, a first data element, of the data elements, from a first data file of the plurality of data files; extracting, by the computing resource of the cloud computing environment, a second data element, of the data elements from a second data file of the plurality of data files; determining, by the computing resource of the cloud computing environment, that the first data element and the second data element require a data transformation; mapping, by the computing resource of the cloud computing environment, the first data element and the second data element to a common transformation algorithm; transforming, by the computing resource of the cloud computing environment, the first data element, using the common transformation algorithm, into a modified first data element; transforming, by the computing resource of the cloud computing environment, the second data element, using the common transformation algorithm, into a modified second data element; assigning, by the computing resource of the cloud computing environment, the data elements extracted from the plurality of data files to file identifiers that identify from which of the plurality of data files the data elements were extracted; assigning, by the computing resource of the cloud computing environment, the data elements extracted from the plurality of data files to attribute identifiers that identify types of healthcare data represented by the data elements; assigning, by the computing resource of the cloud computing environment, the modified first data element and the modified second data element to a first attribute identifier of the attribute identifiers; aggregating, by the computing resource of the cloud computing environment, the data elements based on the file identifiers and the attribute identifiers to create a standardized data set; mapping, by the computing resource of the cloud computing environment, the data elements in the standardized data set to a plurality of functions contained in at least one function library based on a mapping between the attribute identifiers and the plurality of functions; generating, by the computing resource of the cloud computing environment, a plurality of values based on mapping the data elements to the plurality of functions; determining, by the computing resource of the cloud computing environment, a healthcare metric based on combining the plurality of values according to a healthcare metric definition; and posting, by the computing resource of the cloud computing environment, the healthcare metric to the healthcare EDI for consumption by healthcare data clients.

“2. The method of claim 1, wherein assigning the data elements extracted from the plurality of data files to the attribute identifiers comprises: examining a data file, of the plurality of data files, to identify a combination of data elements present in the data file; and determining, using a machine learning model, a score for a data element in the data file based on the combination of data elements present in the data file, wherein the score predicts a type of healthcare data represented by the data element based on the combination of data elements present in the data file; and assigning the data element to one of the attribute identifiers based on the score.

“3. The method of claim 1, further comprising: examining a data file, of the plurality of data files, to identify a combination of data elements present in the data file; and determining, using a machine learning model, a score for the data file based on the combination of data elements present in the data file, wherein the score predicts a healthcare subject area associated with the data file based on the combination of data elements present in the data file; and assigning the data file to a healthcare subject area repository based on the score.

“4. The method of claim 1, further comprising: examining the standardized data set to identify the attribute identifiers present in the standardized data set; determining, using a data model, a list of healthcare metrics that are derivable from the standardized data set based on the attribute identifiers present in the standardized data set; and presenting the list of healthcare metrics that are derivable from the standardized data set to one or more healthcare data clients.

“5. The method of claim 1, further comprising validating decimal and integer fields in the plurality of data files converted to the common data format.

“6. The method of claim 1, further comprising: calculating a plurality of key performance indicators (KPIs) based on mapping the data elements in the standardized data set to the plurality of functions contained in the at least one function library; and posting the plurality of KPIs to the healthcare EDI for consumption by healthcare data clients.

“7. The method of claim 1, wherein the plurality of data files are received in two or more data formats including: a HL7 message format, a DICOM message format, a XML, message format, a JSON message format, or a NCPDP message format.

“8. A device, comprising: one or more memory devices; and one or more processors, implemented at least partially in hardware and communicatively coupled to the one or more memory devices, to: receive a plurality of data files, wherein the plurality of data files are received in a plurality of different data formats, and wherein the plurality of data files include data elements associated with healthcare data; convert the plurality of data files received in the plurality of different data formats to a common data format; extract data elements from the plurality of data files converted to the common data format; extract a first data element, of the data elements, from a first data file of the plurality of data files; extract a second data element, of the data elements from a second data file of the plurality of data files; determine that the first data element and the second data element require a data transformation; map the first data element and the second data element to a common transformation algorithm; transform the first data element, using the common transformation algorithm, into a modified first data element; transform the second data element, using the common transformation algorithm, into a modified second data element; assign the data elements extracted from the plurality of data files to file identifiers that identify from which of the plurality of data files the data elements were extracted; assign the data elements extracted from the plurality of data files to attribute identifiers that identify types of healthcare data represented by the data elements; assign the modified first data element and the modified second data element to a first attribute identifier of the attribute identifiers; aggregate the data elements based on the file identifiers and the attribute identifiers to create a standardized data set; examine the standardized data set to identify the attribute identifiers present in the standardized data set; determine, using a data model, a list of healthcare metrics that are derivable from the standardized data set based on the attribute identifiers present in the standardized data set; map the data elements in the standardized data set to a plurality of functions based on a mapping between the attribute identifiers and the plurality of functions, wherein the plurality of functions is configured to generate a healthcare metric included in the list of healthcare metrics; generate a plurality of values based on processing the data elements using the plurality of functions; derive the healthcare metric based on combining the plurality of values according to a healthcare metric definition; and post the healthcare metric to a healthcare electronic data interchange (EDI) for consumption by healthcare data clients.

“9. The device of claim 8, wherein the one or more processors are further configured to: examine a data file, of the plurality of data files, to identify a combination of data elements present in the data file; determine, using a machine learning model, a score for the data file based on the combination of data elements present in the data file, wherein the score predicts a healthcare subject area associated with the data file based on the combination of data elements present in the data file; and assign the data file to a healthcare subject area repository based on the score.

“10. The device of claim 8, wherein the attribute identifiers are associated with a health insurance member, a health insurance claim, a healthcare provider, a hospital, or a pharmacy.

“11. The device of claim 8, wherein the plurality of functions is configured to calculate a plurality of key performance indicators (KPIs) associated with a healthcare subject area.

“12. The device of claim 11, wherein the healthcare subject area includes one of: a first subject area relating to a pharmacy, a second subject area relating to a hospital, a third subject area relating to a primary care physician, or a fourth subject area relating to health insurance.

“13. The device of claim 8, wherein the plurality of data files are received from the healthcare EDI.

“14. The device of claim 13, wherein the plurality of data files are received in two or more data formats including: a HL7 message format, a DICOM message format, a XML message format, a JSON message format, or a NCPDP message format.

“15. A non-transitory computer-readable medium storing instructions, the instructions comprising: one or more instructions that, when executed by one or more processors, cause the one or more processors of a device to: receive a plurality of data files, wherein the plurality of data files are received in a plurality of different data formats, and wherein the plurality of data files include data elements; convert the plurality of data files received in the plurality of different data formats to a common data format; extract data elements from the plurality of data files converted to the common data format; extract a first data element, of the data elements, from a first data file of the plurality of data files; extract a second data element, of the data elements from a second data file of the plurality of data files; determine that the first data element and the second data file require a data transformation; map the first data element and the second data element to a common transformation algorithm; transform the first data element, using the common transformation algorithm, into a modified first data element; transform the second data element, using the common transformation algorithm, into a modified second data element; assign the data elements extracted from the plurality of data files to file identifiers that identify from which of the plurality of data files the data elements were extracted; assign the data elements extracted from the plurality of data files to attribute identifiers that identify types of data represented by the data elements, wherein for a data file of the plurality of data files: examine the data file to identify a combination of data elements present in the data file, determine, using a first machine learning model, a first score for a data element in the data file based on the combination of data elements present in the data file, wherein the first score predicts a type of data represented by the data element based on the combination of data elements present in the data file, and assign the data element to an attribute identifier based on the first score; assign the modified first data element and the modified second data element to a first attribute identifier of the attribute identifiers; aggregate the data elements based on the file identifiers and the attribute identifiers to create a standardized data set; map the data elements in the standardized data set to a plurality of functions contained in at least one function library based on a mapping between the attribute identifiers and the plurality of functions; generate a plurality of values based on mapping the data elements to the plurality of functions; derive a metric based on combining the plurality of values according to a metric definition; and post the metric to an electronic data interchange (EDI) for consumption by data clients.

“16. The non-transitory computer-readable medium of claim 15, wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to: determine, using a second machine learning model, a second score for the data file based on the combination of data elements present in the data file, wherein the second score predicts a subject area associated with the data file based on the combination of data elements present in the data file; and assign the data file to a subject area repository based on the second score.

“17. The non-transitory computer-readable medium of claim 15, wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to: examine the standardized data set to identify the attribute identifiers present in the standardized data set; determine, using a data model, a list of metrics that are derivable from the standardized data set based on the attribute identifiers present in the standardized data set; and present the list of metrics that are derivable from the standardized data set to one or more data clients.

“18. The non-transitory computer-readable medium of claim 15, wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to: generate a plurality of key performance indicators (KPIs) based on mapping the data elements in the standardized data set to the plurality of functions contained in the at least one function library; and post the plurality of KPIs to the EDI for consumption by healthcare data clients.

“19. The non-transitory computer-readable medium of claim 15, wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to: transmit the metric to one or more data clients.

“20. The method of claim 1, further comprising: receiving the plurality of data files in a streaming manner; and receiving the plurality of data files using application programming interface (API) calls.”

URL and more information on this patent, see: Sundararaman, Arun; Ramamoorthy, Udayakumar; Pargunarajan, Sureshkumar; Appusamy, Sangeetha. Data Platform For Automated Data Extraction, Transformation, And/Or Loading. U.S. Patent Number 10,810,223, filed June 14, 2018, and published online on November 2, 2020. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=10,810,223.PN.&OS=PN/10,810,223RS=PN/10,810,223

(Our reports deliver fact-based news of research and discoveries from around the world.)

Older

UMaine System retirees picket, plan legal action over benefits change

Newer

Revisions to Publication Requirements for Community Eligibility Status Information Under the National Flood Insurance Program

Advisor News

  • How OBBBA is a once-in-a-career window
  • RICKETTS RECAPS 2025, A YEAR OF DELIVERING WINS FOR NEBRASKANS
  • 5 things I wish I knew before leaving my broker-dealer
  • Global economic growth will moderate as the labor force shrinks
  • Estate planning during the great wealth transfer
More Advisor News

Annuity News

  • An Application for the Trademark “DYNAMIC RETIREMENT MANAGER” Has Been Filed by Great-West Life & Annuity Insurance Company: Great-West Life & Annuity Insurance Company
  • Product understanding will drive the future of insurance
  • Prudential launches FlexGuard 2.0 RILA
  • Lincoln Financial Introduces First Capital Group ETF Strategy for Fixed Indexed Annuities
  • Iowa defends Athene pension risk transfer deal in Lockheed Martin lawsuit
More Annuity News

Health/Employee Benefits News

  • Geisinger Health Plan recognized by U.S. News & World Report as a 2026 Best Insurance Company for Medicare Advantage
  • Studies from David Geffen School of Medicine University of California Los Angeles (UCLA) Have Provided New Data on COVID-19 (Health Insurance and Access to Care After Unemployment in Medicaid Expansion Versus Nonexpansion States During COVID-19): Coronavirus – COVID-19
  • Get Covered Illinois Extends First Open Enrollment Deadline
  • Column: Nebraska health insurance executive offers ways to solve health care crisis
  • Column: I'm a Nebraska health insurance executive. These are keys to solving our health care crisis
Sponsor
More Health/Employee Benefits News

Life Insurance News

  • ROUNDS LEADS LEGISLATION TO INCREASE TRANSPARENCY AND ACCOUNTABILITY FOR FINANCIAL REGULATORS
  • The 2025-2026 risk agenda for insurers
  • Jackson Names Alison Reed Head of Distribution
  • Consumer group calls on life insurers to improve flexible premium policy practices
  • Best’s Market Segment Report: Hong Kong’s Non-Life Insurance Segment Shows Growth and Resilience Amid Market Challenges
More Life Insurance News

- Presented By -

Top Read Stories

More Top Read Stories >

NEWS INSIDE

  • Companies
  • Earnings
  • Economic News
  • INN Magazine
  • Insurtech News
  • Newswires Feed
  • Regulation News
  • Washington Wire
  • Videos

FEATURED OFFERS

Slow Me the Money
Slow down RMDs … and RMD taxes … with a QLAC. Click to learn how.

ICMG 2026: 3 Days to Transform Your Business
Speed Networking, deal-making, and insights that spark real growth — all in Miami.

Your trusted annuity partner.
Knighthead Life provides dependable annuities that help your clients retire with confidence.

Press Releases

  • Two industry finance experts join National Life Group amid accelerated growth
  • National Life Group Announces Leadership Transition at Equity Services, Inc.
  • SandStone Insurance Partners Welcomes Industry Veteran, Rhonda Waskie, as Senior Account Executive
  • Springline Advisory Announces Partnership With Software And Consulting Firm Actuarial Resources Corporation
  • Insuraviews Closes New Funding Round Led by Idea Fund to Scale Market Intelligence Platform
More Press Releases > Add Your Press Release >

How to Write For InsuranceNewsNet

Find out how you can submit content for publishing on our website.
View Guidelines

Topics

  • Advisor News
  • Annuity Index
  • Annuity News
  • Companies
  • Earnings
  • Fiduciary
  • From the Field: Expert Insights
  • Health/Employee Benefits
  • Insurance & Financial Fraud
  • INN Magazine
  • Insiders Only
  • Life Insurance News
  • Newswires
  • Property and Casualty
  • Regulation News
  • Sponsored Articles
  • Washington Wire
  • Videos
  • ———
  • About
  • Advertise
  • Contact
  • Editorial Staff
  • Newsletters

Top Sections

  • AdvisorNews
  • Annuity News
  • Health/Employee Benefits News
  • InsuranceNewsNet Magazine
  • Life Insurance News
  • Property and Casualty News
  • Washington Wire

Our Company

  • About
  • Advertise
  • Contact
  • Meet our Editorial Staff
  • Magazine Subscription
  • Write for INN

Sign up for our FREE e-Newsletter!

Get breaking news, exclusive stories, and money- making insights straight into your inbox.

select Newsletter Options
Facebook Linkedin Twitter
© 2025 InsuranceNewsNet.com, Inc. All rights reserved.
  • Terms & Conditions
  • Privacy Policy
  • InsuranceNewsNet Magazine

Sign in with your Insider Pro Account

Not registered? Become an Insider Pro.
Insurance News | InsuranceNewsNet