Patent Application Titled “Systems, Methods, And Assemblies For Improvement Of Explosion And Fire Resistant Properties In Fluid Containers” Published Online (USPTO 20190262639) - Insurance News | InsuranceNewsNet

InsuranceNewsNet — Your Industry. One Source.™

Sign in
  • Subscribe
  • About
  • Advertise
  • Contact
Home Now reading Newswires
Topics
    • Advisor News
    • Annuity Index
    • Annuity News
    • Companies
    • Earnings
    • Fiduciary
    • From the Field: Expert Insights
    • Health/Employee Benefits
    • Insurance & Financial Fraud
    • INN Magazine
    • Insiders Only
    • Life Insurance News
    • Newswires
    • Property and Casualty
    • Regulation News
    • Sponsored Articles
    • Washington Wire
    • Videos
    • ———
    • About
    • Advertise
    • Contact
    • Editorial Staff
    • Newsletters
  • Exclusives
  • NewsWires
  • Magazine
  • Newsletters
Sign in or register to be an INNsider.
  • AdvisorNews
  • Annuity News
  • Companies
  • Earnings
  • Fiduciary
  • Health/Employee Benefits
  • Insurance & Financial Fraud
  • INN Exclusives
  • INN Magazine
  • Insurtech
  • Life Insurance News
  • Newswires
  • Property and Casualty
  • Regulation News
  • Sponsored Articles
  • Video
  • Washington Wire
  • Life Insurance
  • Annuities
  • Advisor
  • Health/Benefits
  • Property & Casualty
  • Insurtech
  • About
  • Advertise
  • Contact
  • Editorial Staff

Get Social

  • Facebook
  • X
  • LinkedIn
Newswires
Newswires RSS Get our newsletter
Order Prints
September 12, 2019 Newswires
Share
Share
Post
Email

Patent Application Titled “Systems, Methods, And Assemblies For Improvement Of Explosion And Fire Resistant Properties In Fluid Containers” Published Online (USPTO 20190262639)

Chemicals & Chemistry Business Daily

2019 SEP 12 (NewsRx) -- By a News Reporter-Staff News Editor at Chemicals & Chemistry Business Daily Business Daily Daily -- According to news reporting originating from Washington, D.C., by NewsRx journalists, a patent application by the inventor Menon, Vinod (Mumbai, IN), filed on January 30, 2019, was made available online on August 29, 2019.

The assignee for this patent application is Atom Alloys LLC (Wilmington, Delaware, United States).

Reporters obtained the following quote from the background information supplied by the inventors: “Field of the Invention

“The present invention is directed to systems, assembles, apparatus, and associated methodologies for improving fire and explosion resistance in fluid containers, such as liquid and gaseous fuel tanks.

“Description of the Related Art

“In one embodiment, the present invention suppresses the combustion, or tendency to combust, of the fuels and gasses stored within the inventive containers described herein. In one aspect, the inventive apparatus of the present invention reduces the ignitability of a system by increasing the heat loss characteristics via large and efficient heat conduction pathways, such as by disposing base modules made of expanded metal mesh inside of the containers. However, developing containers for transportation and storage of fuel and gas, which are not only effective at supressing combustion, but also do not sacrifice other beneficial characteristics, calls for additional considerations beyond the mere conduction of heat away from the fuel or gas.

“In certain embodiments, the size and volume of any solution disposed within the container should be minimal, so as to maximise the amount of fluid that may be disposed within the container. Additionally, the system should provide sufficient thermal conduction to maintain the fluid below its ignition temperature. The system should also provide, on average, fluid cavities that are not larger than the quench distance of the fluid therein. These factors are compounded by the necessity of mechanical integrity for an optimal system due to cyclical stresses that may be experienced as well as the potential for corrosion due to the fluid itself.”

In addition to obtaining background information on this patent application, NewsRx editors also obtained the inventor’s summary information for this patent application: “The present invention is directed to systems, assembles, apparatus, and associated methodologies for improving fire and explosion resistance in fluid containers, such as fuel and gas tanks. In basic principle, one embodiment of the present invention provides an inventive and efficient way to prepare expanded metallic mesh for suitable use as a heat conductor and flame quencher within a fluid container. The present invention makes use of such mesh in base modules, which in preferred embodiments are cylindrical in construction, and of varying diameter, as may be desired for a particular application. The base modules may be combined into assemblies to facilitate the packing of various types of containers.

“In another embodiment, the present invention is directed to inventive fluid tanks, particularly for fuel, gas, or other combustible fluids, with unique systems and structures that inhibit combustion, and therefore fires and explosions.

“The present invention is also directed to various methods and apparatus enabling fabrication of the base modules to be inserted within containers of various shapes and capacity and the associated method of fabrication, assembly, and packaging. The invention also includes methods of assembly and retrofitting of existing fuel tanks. In a further embodiment of the invention, it provides safe transportation of fuels as well as safe and rapid installation and dispensation of fuels on variety of surfaces and terrains in a stand-alone manner. In at least one preferred embodiment, the present invention utilizes low density perforated sheets or webs of metallic materials such as those disclosed by U.S. Pat. No. 6,609,279 to Kogler.

“As described above, the basic module of the present invention may include one or more layers of mesh rolled into a cylindrical configuration. Two or more basic modules may be combined along a cylindrical axis to form an assembly of the present invention. Assemblies, and in certain embodiments, the base modules themselves, may be disposed within containers, which not only control combustion, but also provides strength and reduces ‘sloshing’ of liquids that may be generated during transportation and other application-induced vibration, thereby removing the need for baffles in fuel tanks. Further, the basic module reduces evaporation loss due to heat transferred from vaporous regions of a container to liquid regions.

“In a preferred embodiment, the basic module is constructed of two counter layers of metallic mesh which exhibits good conductivity, corrosion resistance, and strength. Although any materials which satisfy above requirements can be used, extensive research and testing has led to the conclusion that certain alloys may be employed in specific use cases. The materials should be compatible with various liquid fuels and should have good mechanical strength. Alternatively, for high strength requirements, a mesh of special steels, in particular stainless steel, can be used. As steel has relatively low thermal conductivity, when compared to other alloys, a composite mesh of steel and copper and/or copper alloys, or composite of steel and aluminium mesh rolled into a cylindrical configuration may be utilized in order to increase the thermal conductivity of the overall assembly.

“The invention is also directed to the design and methods of manufacturing of a generally cylindrical shape of compact semi-porous unit developed from two dimensional mesh or web of predetermined density, which in certain embodiments may be constrained by a metallic net or perforated wrapper, the entire assembly comprised of base modules for filling the spaces within fuel containers.

“The present invention is also directed to apparatus and associated methods to produce this base module without damage to the mesh or web that it is constructed from, and with a given density and form. In a further embodiment, the present invention is also directed to methods of packing the cylindrical units to containers of different shapes and dimensions in order to maximise the dispersion of the base modules within the volume of the container. For large containers, the space may be partitioned into different compartments that can be packed with the base module or assemblies thereof. The design of the base module also addresses mechanical integrity of the rolled, perforated, stretched sheets against impact loading, both at low and high strain rates, and importantly, preventing the formation of metallic particles that can contaminate the fuels, without resort to overly complex configurations of the base modules themselves.

“In a preferred embodiment, the apparatus for forming the base module is capable of modulating the tension in the mesh during rolling of the basic module via tensioners, pretensioners, and weighted rollers. As such, the rigidity and flexural strength of the base modules may be adjusted for a given use case of the base module being formed, with tighter rolling of the base module leading to enhanced rigidity and flexural strength. Additionally, the diameter to height ratio of a base module may be adjusted according to these parameters.

“Yet another feature of the present invention is the optimization of packing schemes for given container shapes and sizes. Particularly, the present invention takes advantage of the adjustable rigidity and flexural strength of the base modules to create base modules which are suitable for particular packing schemes. In a preferred embodiment, the packing of fuel drums in the 55 gallon class includes basic modules or assemblies having a diameter of approximately 20% of the drum diameter. Depending upon the particular parameters set by the base module production apparatus (tension, weight, etc.), approximately between 19 and 24 assemblies may be used to fill the drum. In yet another preferred embodiment, the packing of cuboid containers employs the use of two different diameters of base modules, the smaller diameter being approximately 40% of the diameter of the larger base module. As will then be appreciated, the packing scheme of the present invention is optimized for the use of semi-rigid base modules, which in a preferred embodiment are cylindrical in form.

“Additionally, the base module is resistant to mechanical forces experienced during transportation or during exposure to impact, including penetration of projectiles. In a preferred embodiment, base modules of cylindrical configuration may be aligned along the expected gravitational vector during use and/or transportation of a container. Tests conducted using a tilt table evidence that the integrity of the mesh comprising the basic module is maintained when the longitudinal axis of the base module is substantially parallel to the gravitational axis. Extensive testing conducted with the longitudinal axis of the basic module at a substantial angle to the gravitational axis indicated enhanced and/or accelerated degradation of the mesh and generation of metal particles. Both of these conditions lead to decreased combustion resistance and contamination of the fluids stored within the container.

“Yet another advantage of the present invention is the reduction of ‘sloshing’ of fluid within the containers without the need to introduce purpose-built baffles. When the packing scheme of the present invention is utilized, an optimum and maximized packing capacity is achieved. Accordingly, slosh-induced impact of the base modules and tank during movement of the container is reduced, thereby enhancing the life span of the base module. The benefits of this aspect of the present invention can be realized across a variety of containers, from large tanks on ships to smaller containers for road transportation.

“In yet another embodiment, the mesh may comprise high strength aluminium alloys that are corrosion resistant (by way of non-limiting example, 5052 aluminium alloy) and/or a mechanical composite of two or more meshes of dissimilar metals and alloys such as, but not limited to, stainless steel, high strength steel, high strength aluminium alloys, and copper alloys including pure copper, copper-bronze and other high-strength copper alloys such as, but not limited to, copper-titanium alloys. In essence, the composition of metals comprising the mesh, or composite mesh, may be selected, blended, and/or combined for a plurality of criteria, such as strength, rigidity, durability, corrosion resistance, heat absorption, and heat dissipation.

“The inventive apparatus for forming the basic module according to at least two embodiments of the present invention are also disclosed herein. In a preferred embodiment, a feed stock of mesh is used to create base modules wherein the length of the base modules is dictated by the width of the feedstock. By way of non-limiting example, the width of the feed stock may be on the order of approximately 240-250 mm. Although, smaller base modules may be created by folding the feed stock according to inventive methodologies disclosed herein.

“In one preferred embodiment, the mesh used for production of the base module is a two dimensional honeycomb web made of approximately 45 micron thick proprietary metal foil. Due to its architecture, the sheet of this class of materials tends to be prone to wrinkling and tear. These sheets are rolled into cylinders with varying density resulting in cylinders of varying flexibility and rigidity that also resist damage or fragmentation due to external stresses both under ambient and liquid fuel environment. Hence, some of the design considerations for the apparatus to construct these cylinders are the choice and application of rollers, as well as the creation of tension and varying speed for making different types of rolls.

“The manufacturing of a cylindrical mesh roll is carried out by rolling counter layers of expanded mesh on a rolling spindle. The tensions in the counter layers can be adjusted to obtain variable rigidity and deformability of the base modules. The specification of the base module will vary for different applications. By way of non-limiting example, for certain applications the base module may require the additional capability of removing/absorbing the kinetic energy of a projectile, so that the projectile is trapped inside the mesh. Besides the use of high strength materials for the manufacture of the mesh, this can be achieved by making cylindrical mesh rolls of predetermined density. A denser roll can be achieved by varying at least two parameters, namely, the introduction of tension/strain on free rolling counter layers of expanded mesh via a tensioning spindle; and varying the speed (RPM) of the main roller/shaft. Thus, in a preferred embodiment, such an apparatus for the production of the cylindrical roll can vary at least these two parameters in order to achieve varying degrees of density in the rolls of cylindrical mesh as required for different applications.

“A step by step description of the manufacturing process and associated description including the role of the different components of the apparatus, according to one embodiment of the present invention, is as follows. The initial feedstock for making a cylindrical basic module is a sheet of webbed mesh, which as discussed may comprise the mesh as disclosed in U.S. Pat. No. 6,609,279 to Kogler. A ‘large’ roll of such sheets may include dimensions on the order of 900 mm in diameter and a width of 240-250 mm. An initial step may comprise the unwinding of the mesh from the roll and is carried out utilizing a guiding system with a sensor to a reverse crown spreader, preventing wrinkles and separating the webs. The roll in the reverse crown spreader has a variable diameter with the ends slightly larger than the center. The difference in surface speed due to this difference causes mesh tension distribution that can be shaped and controlled through the variable speed profile. This is most effective for an extensible material such as the expanded mesh utilized in the present invention.

“The web is then passed over another roller, which in a preferred embodiment is made of polyurethane foam or similar materials, with a rough roll surface that allows passing of vent air from roll surface and prevents tracking, scratching, compressing and elongation of the mesh. This step is referred to as ‘air greasing.’

“Subsequently, the web is passed through a pair of idler foam rollers to flatten any lateral deformations in the web, which may also be used to at least partially control the speed and tension of the web. The principle of speed control of the web is as follows.

“T 2 = T 1 ( V 2 V 1 ) + EA ( V 2 - V 1 ) V 1 ##EQU00001##

“Wherein, T.sub.2 is the tension in a given region between two rollers, T.sub.1 is the tension in the previous tension zone, V.sub.1 is the velocity of one roller, and V.sub.2 is the velocity of the second roller, E is the elasticity of the material, and A is the cross-sectional area of the material. It is noted that the larger the value of E, the more likely the material is to stretch. For most values of EA, the inventor has noted that varying the torque applied to a roller provides superior control of the material. However, for very ‘stretchy’ material (very low values of EA) speed control may be an acceptable substitute if torque control is not feasible.

“With this principle in mind, the web is passed through an idler roller before it is fed into the rolling section. It includes a pair of pretensioners and tensioners, as well as a weighted roller applied to the main spindle. The pretensioner guides the web to the main tensioner. The tension in the web can be adjusted through the positioning of the tensioner, the pressure applied by a weighted roller applied to the main spindle applying uniform lateral pressure across the mesh as it is rolled on the main spindle, as well as the torque/speed of the main spindle.

“More specifically, after the web passes through the first pretensioner, it enters the main tensioner from which it is guided to the main roller. The web travels around the main roller to reenter the main tensioner at a different level and move to the second pretensioner. From this, the web is extruded (pushed) to a predetermined point in the conveyer belt. At this point a cutter is used to cut the web on the primary conveyor, severing it from the mesh spool. This produces one sheet of mesh disposed in two counter layers on the conveyor belt for making a cylindrical basic module. The total length of the mesh dictates the diameter of the base module.

“The web, which is now disposed across counter layers, is rolled from approximately the mid-point thereof. The web is held captive against the main spindle using a spindle lock. The weighted roller is placed against the web on the main spindle to provide uniform lateral pressure on the rolling web. Following this, the motor is triggered and the mesh is rolled onto the main spindle to produce the base module that can be stacked for producing an assembly of desired height. Once the rolling is complete the weighted roller is removed and the spindle lock is released to remove the base module. By controlling the pressure of the weighing wheel, the tension applied by the tensioner, and the speed/torque of the main spindle, the density of the tower cylinder can be controlled.

“A net may be applied to the exterior of the base module. The choice of the material for the net varies according to application. For critical or strategic applications, metal wire of higher tensile strength (such as the class of stainless steels referred to as ‘super’) is used; this helps in stopping or absorbing the kinetic energy of impacts and/or projectiles. The net also prevents the fragmentation of the mesh rolls during movement/transport. The presence of the net additionally reduces the abrasive effect that expanded mesh rolls could have on plastic tanks and rubber seals inside metal tanks. An alternative to the steel jacket for other applications may be to wrap the cylinder with the similar mesh of other materials.

“The present invention is also directed to systems and methods for packing various containers of various sizes with the aforementioned structures. The geometry of the stacking is determined by the shape of the final tank and requirement of dense packing in three dimensions to effect heat dissipation for preventing the uncontrolled growth of a combustion front and hence, varies for different shapes. The filling process in actual tanks is versatile; the installation process is capable of retrofitting any existing tank; and the process is environmentally friendly.

“One objective of the inventive method is to provide a uniform conducting path for thermal dissipation within the container. Thus the density of the packing and the method of achieving it is significant to the optimal function of the present invention.

“The base modules may be stacked along a cylindrical axis to create an assembly with a given shape and density as well as to contain a mechanism for filling and withdrawing liquids at a reasonable rate. The latter is achieved by introducing a perforated fluid transport channel designed to take into account volumetric flow of the fluid as well as the geometry of the tank. In a preferred embodiment, the entire assembly is shaped by wrapping it with nets in such a way that it can be introduced into the empty tank.

“In order to wrap the assembly in a net, the assemblies of base modules, together with any mechanism of liquid transfer as well as any required sensors are mounted on a wrapping machine. The net (preferably, but not necessarily, stainless steel mesh) is wrapped over the base module to provide shape and stability to the entire cluster of assemblies.

“In this regard, yet another aspect of the present invention is an inventive wrapping machine that is capable of motion in both X and Y axes with similar speeds to provide uniform wrapping. The wrapping material (which in certain embodiments may comprise the same mesh as the base modules) is mounted on the X axis on a cantilevered arm of the wrapping machine. In a preferred embodiment, the wrapping operations are carried out to provide four counter layers in a horizontal orientation, and two counter layers in a vertical orientation.

“In yet another embodiment, the present invention is deployed in conjunction with a fuel drum, typically of the 55 gallon class, but the principles of the present invention can be deployed in a variety of cylindrical containers, such as propane tanks. To achieve a light weight, fire retardant assembly for use during transport, use, filling, and dispensation of fluids. One preferred embodiment encompasses a filler or base module for explosion retarding materials that enable manufacturing of a light-weight, explosion-retardant, polymer drum (e.g., high density polyethylene) which is packed with a plurality of assemblies and a perforated fluid transport channel.

“In yet another embodiment, the present invention may be deployed in conjunction with military, police, or other fuel containers which are likely to be exposed to penetration via projectiles, such as bullets or shrapnel. In such an embodiment, the mesh forming the basic modules may be made from high strength alloys, such as steel, and incorporated alongside other meshes, such as copper or aluminium, that have good heat transfer characteristics. In one preferred embodiment, the present invention may utilize a mechanical composite of stainless steel and copper or aluminium in a single mesh. The high strength materials impart additional resistance to projectiles. In yet another embodiment, the high strength mesh materials may be disposed along an outer periphery of the interior of the tank, while the heat conducting mesh materials are disposed within an interior portion. In yet further embodiments, the two portions may be partitioned such that, in the event of a puncture, the inner, heat conducting mesh portion, may still retain fuel.

“These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.”

The claims supplied by the inventors are:

“1. A fluid container comprising: a plurality of assemblies disposed therein; each of said plurality of assemblies comprising a plurality of base modules disposed along a cylindrical axis; and each of said plurality of base modules formed of mesh.

“2. The fluid container as recited in claim 1 further comprising a perforated fluid transfer channel disposed within said plurality of assemblies.

“3. The fluid container as recited in claim 1 wherein said container comprises a drum.

“4. The fluid container as recited in claim 3 further comprising between 19 and 24 assemblies disposed within said drum.

“5. The fluid container as recited in claim 1 wherein each of said plurality of assemblies comprise a cylindrical configuration with a diameter of about twenty percent of a diameter of said drum.

“6. The fluid container as recited in claim 1 wherein said container comprises a portable fuel can; said plurality of assemblies being configured in a can cluster.

“7. The fluid container as recited in claim 1 wherein said container comprises a mobile fuel station.

“8. The fluid container as recited in claim 1 wherein said container comprises a tanker; said plurality of assemblies being disposed on a plurality of lattice structures form a plurality of cell clusters.

“9. The fluid container as recited in claim 1 wherein at least some of said plurality of assemblies have a first diameter, at least some others of said plurality of assemblies have a second diameter.

“10. The fluid container as recited in claim 9 wherein the ratio of said first diameter to said second diameter is 1.0 to 0.4.

“11. The fuel container as recited in claim 9 wherein said plurality of assemblies are disposed within a lattice structure.

“12. A fuel drum comprising: a plurality of assemblies disposed in a drum cluster configuration; each of said plurality of assemblies formed of a plurality of base modules arranged along a cylindrical axis; each of said plurality of base modules formed of mesh.

“13. The fuel drum as recited in claim 12 wherein said plurality of assemblies each comprise a diameter between 19% and 21% of a diameter of said fuel drum.

“14. The fuel drum as recited in claim 12 wherein said drum cluster configuration comprises between 19 and 24 assemblies and a fluid transfer channel.

“15. The fuel drum as recited in claim 12 further comprising at least one layer of mesh disposed between the inner surface of said fuel drum and said drum cluster configuration.

“16. The fuel drum as recited in claim 12 wherein said drum cluster configuration occupies a volume of not more than 4100 milliliters.

“17. A portable fuel container comprising: a plurality of base modules disposed in a can cluster configuration, at least some of said plurality of base modules disposed vertically within said can cluster configuration; and at least some of said plurality of base modules disposed horizontally within said can cluster configuration.

“18. The portable fuel container as recited in claim 17 wherein said portable fuel container comprises a jerry can configuration.

“19. The portable fuel container as recited in claim 17 wherein said can cluster configuration occupies not more than 2% of the volume of said portable fuel container.”

For more information, see this patent application: Menon, Vinod. Systems, Methods, And Assemblies For Improvement Of Explosion And Fire Resistant Properties In Fluid Containers. Filed January 30, 2019 and posted August 29, 2019. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220190262639%22.PGNR.&OS=DN/20190262639&RS=DN/20190262639

(Our reports deliver fact-based news of research and discoveries from around the world.)

Older

Koch begins work in Murray County

Newer

Changes in Flood Hazard Determinations

Advisor News

  • SEC: Get-rich-quick influencer Tai Lopez was running a Ponzi scam
  • Companies take greater interest in employee financial wellness
  • Tax refund won’t do what fed says it will
  • Amazon Go validates a warning to advisors
  • Principal builds momentum for 2026 after a strong Q4
More Advisor News

Annuity News

  • Continental General Acquires Block of Life Insurance, Annuity and Health Policies from State Guaranty Associations
  • Lincoln reports strong life/annuity sales, executes with ‘discipline and focus’
  • LIMRA launches the Lifetime Income Initiative
  • 2025 annuity sales creep closer to $500 billion, LIMRA reports
  • AM Best Affirms Credit Ratings of Reinsurance Group of America, Incorporated and Subsidiaries
More Annuity News

Health/Employee Benefits News

  • CQMC UPDATES CORE MEASURE SETS TO STRENGTHEN FOCUS ON HEALTH OUTCOMES AND REDUCE BURDEN
  • Fewer Kentuckians covered by Kynect plans
  • Fewer Kentuckians covered by ACA health insurance plans as subsidies stall in US Senate
  • Inside Florida's decision to cut thousands off from affordable AIDS drugs
  • Support H.433 for publicly financed universal primary care
More Health/Employee Benefits News

Life Insurance News

  • Corporate PACs vs. Silicon Valley: Sharply different fundraising paths for Democratic rivals Mike Thompson, Eric Jones in 4th District race for Congress
  • Continental General Acquires Block of Life Insurance, Annuity and Health Policies from State Guaranty Associations
  • LIMRA launches the Lifetime Income Initiative
  • AM Best Affirms Credit Ratings of Reinsurance Group of America, Incorporated and Subsidiaries
  • Lincoln Financial Reports 2025 Fourth Quarter and Full Year Results
Sponsor
More Life Insurance News

- Presented By -

Top Read Stories

More Top Read Stories >

NEWS INSIDE

  • Companies
  • Earnings
  • Economic News
  • INN Magazine
  • Insurtech News
  • Newswires Feed
  • Regulation News
  • Washington Wire
  • Videos

FEATURED OFFERS

Elevate Your Practice with Pacific Life
Taking your business to the next level is easier when you have experienced support.

LIMRA’s Distribution and Marketing Conference
Attend the premier event for industry sales and marketing professionals

Get up to 1,000 turning 65 leads
Access your leads, plus engagement results most agents don’t see.

What if Your FIA Cap Didn’t Reset?
CapLock™ removes annual cap resets for clearer planning and fewer surprises.

Press Releases

  • LIDP Named Top Digital-First Insurance Solution 2026 by Insurance CIO Outlook
  • Finseca & IAQFP Announce Unification to Strengthen Financial Planning
  • Prosperity Life Group Appoints Nick Volpe as Chief Technology Officer
  • Prosperity Life Group appoints industry veteran Rona Guymon as President, Retail Life and Annuity
  • Financial Independence Group Marks 50 Years of Growth, Innovation, and Advisor Support
More Press Releases > Add Your Press Release >

How to Write For InsuranceNewsNet

Find out how you can submit content for publishing on our website.
View Guidelines

Topics

  • Advisor News
  • Annuity Index
  • Annuity News
  • Companies
  • Earnings
  • Fiduciary
  • From the Field: Expert Insights
  • Health/Employee Benefits
  • Insurance & Financial Fraud
  • INN Magazine
  • Insiders Only
  • Life Insurance News
  • Newswires
  • Property and Casualty
  • Regulation News
  • Sponsored Articles
  • Washington Wire
  • Videos
  • ———
  • About
  • Advertise
  • Contact
  • Editorial Staff
  • Newsletters

Top Sections

  • AdvisorNews
  • Annuity News
  • Health/Employee Benefits News
  • InsuranceNewsNet Magazine
  • Life Insurance News
  • Property and Casualty News
  • Washington Wire

Our Company

  • About
  • Advertise
  • Contact
  • Meet our Editorial Staff
  • Magazine Subscription
  • Write for INN

Sign up for our FREE e-Newsletter!

Get breaking news, exclusive stories, and money- making insights straight into your inbox.

select Newsletter Options
Facebook Linkedin Twitter
© 2026 InsuranceNewsNet.com, Inc. All rights reserved.
  • Terms & Conditions
  • Privacy Policy
  • InsuranceNewsNet Magazine

Sign in with your Insider Pro Account

Not registered? Become an Insider Pro.
Insurance News | InsuranceNewsNet